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Abstract—Wearable medical devices (WMDs), such as 

pacemakers, insulin pumps, and other implantable systems, are 

critically dependent on battery charge, making them vulnerable 

to various energy depletion threats. This article examines the 

causes of energy loss, including cyberattacks targeting sensor, 

computational, and communication modules. Based on a 

comprehensive literature review, adaptive power management 

methods and an intrusion detection system are proposed to 

enhance the resilience of these devices. The findings highlight the 

urgent need for proactive strategies to ensure the energy security 

of WMDs in the face of increasing cyber-physical threats. 
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I. INTRODUCTION 

The increasing prevalence of chronic diseases and the rise in 
life expectancy are driving the widespread adoption of wearable 
medical devices (WMDs) for continuous monitoring of 
physiological parameters. These devices help ensure autonomy 
and quality of life for individuals with disabilities or chronic 
health conditions. In addition, wearable devices are actively 
used in industry to monitor the physical condition of workers in 
extreme conditions, such as in the mining industry, on oil 
platforms, and in other challenging environments [1-3]. 

To ensure autonomous operation of WMD sensor nodes, 
integrated chemical power sources (e.g., lithium-ion batteries) 
with limited power consumption capabilities are typically used. 
The use of power consumption vulnerabilities as an attack 
vector opens a new dimension of cyber threats, which requires 
comprehensive research and development of effective defense 
mechanisms. 

This article analyzes the energy consumption vulnerabilities of 

WMDs, their impact on reliability, and the potential risks they 

pose. Based on a thorough literature review, it classifies various 

types of attacks — ranging from physical to network-based — 

and proposes optimization methods, including ultra-low-power 

components, data processing algorithms, and energy-efficient 

wireless technologies. 

The research aims to enhance the resilience of such devices to 

failures and security threats amid the growing role of 

technology in modern healthcare. 

II. LITERATURE REVIEW ON ENERGY CONSUMPTION 

VULNERABILITIES 

A. Energy Optimization in Wearable Medical Devices 

Current research efforts aim to reduce the energy consumption 
of WMDs through both software algorithm optimization and 
hardware-level solutions. However, despite notable 
advancements, unresolved issues persist, particularly regarding the 
vulnerability of such systems to external threats, including 
cyberattacks designed to drain their energy resources. 

One fundamental area of focus in energy efficiency is the 
development of ultra-low-power sensors. In [4], sensors for heart 
rate monitoring are presented that consume less than 10 μW, 
enabling power supply lifespans of several months even under 
continuous operation. These devices employ low-voltage circuitry 
and optimized materials; however, the authors note an inevitable 
trade-off between measurement accuracy and power consumption. 
For instance, reducing the sampling rate to conserve energy can 
result in missed anomalies in ECG data, which is unacceptable in 
critical medical scenarios such as arrhythmia diagnosis in patients 
with heart failure. 

An even more advanced solution is described in [5], where 
an ultra-low-power sensor based on laser-induced graphene on 
a flexible PDMS substrate was developed. This three-
dimensional strain sensor, designed for human motion tracking, 
consumes only 5 μW. Its high sensitivity (GF ≈ 225.1) and 
linearity (R² = 0.99062) within a 0–22% strain range make it 
ideal for WMDs. However, the complexity of the readout 
circuit could become a vulnerability under intensive 
computational loads triggered by external factors. 

Advanced signal processing algorithms are employed to 
reduce computational load. Reference [6] describes the use of 
Compressed Sensing (CS), which enables the reconstruction of 
physiological signals, such as pulse or glucose levels, from a 
reduced number of samples, decreasing the volume of transmitted 
data by 40–60% compared to traditional methods. This is 
particularly beneficial for WMDs operating over bandwidth-
constrained networks. Adaptive filtering, including Kalman 
filtering as demonstrated in [7], eliminates noise and redundant 
calculations, reducing processing-related energy consumption by 
up to 30%, as confirmed through experiments with wearable 
pressure sensors. Wavelet transform techniques, discussed in [8], 
provide multiscale data analysis, allowing ECG or motion signals 
to be compressed with minimal loss of informational value, 
making them highly suitable for patient activity monitoring 
systems. 
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Energy-efficient communication protocols complement 
these approaches by optimizing data transmission in WMD 
networks. Clustering techniques, as implemented in protocols 
such as LEACH, HEED, and others [9], distribute the 
communication load among sensors by selecting relay nodes 
based on residual energy levels, reducing overall network 
energy consumption by 20–40% compared to direct 
transmission. Energy-aware routing strategies, described in 
[10], utilize load prediction algorithms for dynamic sensor 
switching, minimizing redundant traffic, and extending battery 
life. Data aggregation methods also discussed in [11] eliminate 
redundant information, reducing transmission volume by 25–
35%, a crucial factor for WMDs operating under limited 
bandwidth conditions such as Bluetooth Low Energy (BLE). 

A review of modern solutions for WMDs, including 
exoskeletons, confirms the relevance of the aforementioned 
methods. In [12], it is emphasized that lower-limb exoskeletons 
utilizing sensors for gait and neural signal analysis have 
significantly improved both mechanical design and learning 
algorithms. However, the authors highlight energy consumption 
as a critical issue: complex computations required for motion 
data processing and continuous communication with control 
systems increase the load on batteries, reducing operational 
autonomy to just a few hours under intensive use. For example, 
inertial measurement unit (IMU) sensors used for joint angle 
tracking require frequent data updates, increasing energy 
consumption by 15–20% without proper optimization. 
Proposed solutions include adaptive control algorithms, but 
their effectiveness remains limited unless external factors are 
accounted for. 

Another example of energy-efficient innovation is the 
artificial olfactory system (AOS) described in [13]. This system 
integrates human olfactory receptors (hORs) with organic 
synaptic devices for neuromorphic odor analysis in wearable 
applications. The AOS enables rapid and energy-efficient data 
processing by generating unique patterns for identifying 
individual odors and their mixtures at the molecular structure 
level. Energy efficiency is achieved through minimized 
computation enabled by the synaptic architecture, making the 
system promising for implantable WMDs such as blood 
chemical composition sensors. However, the complexity of 
odor mixture analysis requires extensive training and 
simulation, which may increase power consumption if 
optimization is lacking, especially under external interference 
or attacks that overload the system with false signals. 

Promising research directions in the field of energy 
efficiency for WMDs include quantum sensors [14] and energy 
harvesting [15] technologies. Quantum sensors, which utilize 
superconducting circuits and quantum coherence effects, offer 
high sensitivity with low power consumption, making them 
suitable for medical applications such as monitoring neural 
activity. At the same time, energy harvesting technologies—
based on piezoelectric, thermoelectric, and photovoltaic 
elements—enable WMDs to draw power from the surrounding 
environment, reducing reliance on conventional batteries. For 
instance, flexible nanogenerators based on the triboelectric 
effect can power sensors by capturing energy from user 
movements. However, despite their advantages, these 
technologies still require further refinement: quantum sensors 

remain costly, and the efficiency of energy harvesting systems 
is limited by the amount of ambient energy available. 

Thus, optimizing energy consumption is a key factor in 
extending the lifespan of WMDs and enhancing their reliability. 
Modern approaches—including adaptive power management 
algorithms, energy-efficient wireless communication protocols, 
and intelligent data routing techniques—enable significant 
reductions in power usage without compromising functionality. 

However, despite the benefits of energy-saving strategies, 
they may introduce new attack vectors. Adversaries can exploit 
features of energy management to launch attacks aimed at 
rapidly depleting battery charge, leading to device malfunctions 
and the loss of critical information. Such attacks, known as 
energy depletion attacks (EDA), pose a serious threat to the 
security and reliability of WMDs. The following section will 
explore the main techniques behind these attacks and their 
potential consequences. 

B. Attacks on energy consumption 

EDA significantly expand the threat landscape for WMDs. 
Unlike traditional cyberattacks, which typically compromise 
data confidentiality, integrity, or availability via authentication 
breaches, data interception, or malicious software interventions, 
these attacks pursue a different objective: to covertly exhaust 
the device's power supply. The primary concern lies in the 
deceptive nature of these threats—they mimic normal 
operational behavior, making detection difficult. This is 
particularly critical in WMDs, where continuous health 
monitoring depends on a stable and uninterrupted power source. 

A growing body of research focuses on energy-based attack 
vectors, exploring both detection strategies and mitigation 
techniques. For instance, attacks on LoRaWAN networks—
used in some WMD applications—have been shown to involve 
two common tactics: (1) request flooding using protocols such 
as TCP-SYN or UDP to overload the network infrastructure, 
and (2) false signaling that prompts devices to retransmit data 
unnecessarily, reducing battery life by 40–60% [16]. 

Modern communication protocols in wireless sensor 
networks increasingly rely on trigger frames to initiate 
transmissions and synchronize node operations. However, in 
the absence of robust authentication mechanisms, these frames 
can become vulnerabilities. Battery-drain attacks exploit this 
weakness by sending deceptive triggers that provoke redundant 
activity, especially in multi-channel configurations where 
increased signaling frequency amplifies exposure [17]. 

Silent attacks on LoRaWAN networks—such as jamming, 
replay attacks, and firmware tampering—pose an additional 
threat. These are difficult to detect due to minimal visible 
network activity, but are highly effective. A notable real-world 
incident involved the recall of pacemakers from St. Jude 
Medical in 2016, where persistent command queries caused 
excessive energy use and prompted an urgent product recall 
[18, 19]. 

Signal jamming attacks, especially under adverse 
environmental conditions, can increase device energy 
consumption by 30–50%, as sensors are forced to repeatedly 
scan for open communication channels. Moreover, activating 
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vibration, screen, and sound notifications in ecosystems with 
wearable and integrated devices has been observed to drain 
smartphone batteries by 80–90% within a single hour of 
continuous use [20, 21]. 

In the broader context of threat analysis for WMDs within 
the architecture of wireless sensor networks, the following 
types of EDA have been identified as potential risks: 

 Vampire attacks: Exploit legitimate-appearing 
communications to initiate energy-intensive operations 
across the network. As node density increases, so does 
the overall energy drain. 

 Ghost attacks: Simulate false events that propagate 
through the network, reducing device lifespan by 
approximately 20–40%. 

 Sleep deprivation attacks: Block low-power sleep 
states, doubling energy consumption. In large-scale 
deployments, a single attacker can disable over one-
third of network nodes by maintaining constant 
activity. Typically implemented at the MAC or 
application layer, using generic communication or 
command flooding to keep devices awake. 

 Sleep deprivation torture: A variant leveraging routing 
protocol configurations, such as those in the OLSR 
protocol, to systematically drain energy from weaker 
nodes. It is more systematic and protocol-specific, often 
implemented at the network layer, focusing on routing 
behavior to exhaust energy reserves. 

 Barrage attacks: Overload devices with excessive 
communication requests, leading to a 10–15% increase 
in energy consumption beyond that caused by sleep 
deprivation alone. These attacks are intense but 
generally easier to detect. 

 Sinkhole attacks: Redirect network traffic through a 
compromised node, creating communication 
bottlenecks and increasing load on both network 
infrastructure and individual nodes. 

These energy-based threats are not confined to a single 
network type but are relevant across various architectures. Their 
diversity, ranging from physical-layer disruptions like jamming 
to sophisticated manipulations of routing protocols, highlights 
the multi-layered vulnerability of such systems. 

Despite the growing volume of research on these attacks, a 
unified analytical framework for categorizing and countering 
them remains largely absent. To address this gap, the current 
study proposes a classification scheme based on the OSI model, 
offering a structured approach for evaluating and mitigating 
energy-related threats in wireless medical and sensor networks 
(Figure 1). 

 
Figure 1. Classification of security threats in WMDs based on the OSI model 

layers. 

While all OSI layers are taken into account, the session and 
presentation layers are considered less critical in this context 
due to their relatively minor impact on energy consumption 
compared to other layers. 
This structured classification facilitates a clearer understanding 
of how various types of attacks affect different functional layers 
of the system. Building on this foundation, the following 
section examines specific defense strategies aligned with each 
OSI layer to enhance both the resilience and energy efficiency 
of WMDs under adversarial conditions. 

III. POWER CONSUMPTION ATTACK DETECTION METHODS 

The detection and prevention of energy-draining attacks in 
WMDs require a comprehensive approach that accounts for 
their multi-layered nature and computational constraints. These 
attacks are often disguised as normal network operations and 
exploit vulnerabilities across various layers—from the physical 
to the application layer—rendering standard security 
mechanisms such as basic traffic filtering or antivirus software 
insufficient. Effective mitigation requires strategies that 
minimize energy consumption, maintain system functionality, 
and are tailored to the unique characteristics of WMDs. 

A. Monitoring abnormal energy consumption 

This method is based on the assumption that under normal 
conditions, a WMD operates within a predictable energy 
consumption range, denoted as Enorm. [22]. Attacks such as 
jamming or sleep deprivation disrupt this mode by causing 
noticeable deviations in the current power consumption of E(t). 
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Methodology: 

 Power consumption E(t) (in milliwatts, mW) is 
measured every Δt seconds. For example, Δt=1s for high 
accuracy or Δt=5s to reduce the load on the device. 

 To smooth out short-term fluctuations, the average 
value  of Eavg is calculated: 

, 

where n is the size of the window (for example, n=10 
measurements, which corresponds to 10 seconds at Δt=1 s). 

 

 An attack is committed if the current power 
consumption exceeds the threshold 

E(t)>Enorm+k⋅ϭ, 

where Enorm is the normal (baseline) power consumption 
(mW), 

ϭ is the standard deviation of energy consumption under 
normal conditions (mW), 

k is the sensitivity coefficient (for example, k = 3, which 
corresponds to the 3ϭ rule for statistically significant 
deviations). An example of the monitoring process with moving 
average smoothing (window size = 10) is illustrated in Figure 2. 

 
Figure 2. Monitoring of power consumption E(t) with moving average 

smoothing (window size = 10). 

This method is easy to implement and does not require large 
computing resources, making it suitable for WMD. It 
effectively detects attacks that dramatically increase energy 
costs, such as flood requests or jamming, but can miss more 
subtle threats that need to be complemented by other 
approaches. 

B. Machine learning methods 

Machine learning (ML) improves detection accuracy by 
analyzing complex dependencies in T(t) (traffic), E(t) (energy), 
and F(t) (sample rate) data. This is achieved by training 
algorithms on historical data, which allows you to predict 
anomalies and recognize patterns specific to attacks. 

Methodology: 

 T(t) (bytes per second), E(t) (milliwatts), and F(t) 
(operations per second) data are used to train an ML model, 
such as a neural network. The model learns to distinguish 

between normal and suspicious device behavior based on a 
combination of all three parameters. 

 After training, the model analyzes the current T(t), E(t), 
and F(t) values in real time. If an anomaly is detected, such as 
an increase in E(t) with a stable T(t) or a spike in F(t) for no 
reason, an attack signal is issued. 

Figure 3 shows a scattering plot showing the distribution of 
power consumption E(t) and frequency F(t) for normal mode 
(Label=0, blue dots) and attacks (Label=1, red dots). In normal 
mode, E(t) is in the range of 450-550 mW, and F(t) is in the 
range of 5-15 ops/s, while in attacks, E(t) increases to 600–850 
mW, and F(t) reaches 37 ops/s. 

C. Analysis of behavioral patterns 

Attacks change the behavior of a device, for example, by 
increasing traffic or the frequency of processes, which makes it 
possible to identify them through profiling. This approach is 
based on creating a basic profile of the device's normal 
behavior and then comparing the current parameters with this 
profile to detect anomalies [23]. 

 
Figure 3. Distribution of energy consumption E(t) and frequency F(t) in 

normal mode and during attacks. 

Methodology 

 Basic profile: The following parameters are defined for 
the normal operation of the WMD: Tnorm=15 packets/s, Enorm=5 
mW. These values are chosen as averages for the typical 
behavior of the device in the absence of attacks. 

 Heuristic: An anomaly is detected if T(t)>Tnorm+2⋅σT for 
more than τ seconds, where T = 2σT traffic standard deviation, 
τ=5 s. Thus, the threshold for anomalous traffic is T(t)>19 
packets/s if it lasts more than 5 seconds. 

 Temporal analysis: Peak T(t) values at night (e.g., at 
2:00 a.m.) are considered suspicious because the device is 
typically in sleep mode with minimal activity during this 
period. 

In normal mode (Label=0), T(t) traffic is about 1000 
bytes/s, which is significantly higher than Tnorm=15 packets/s, 
since the dataset simulates a more intensive scenario of WMD 
operation. However, during attacks (Label=1), the values of T(t) 
can both increase and decrease (for example, from 900 to 1050 
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bytes/s), which requires adaptation of threshold values. The 
power consumption of E(t) and the frequency of F(t), as shown 
in Figure 3, show clearer anomalies: E(t) increases to 600-850 
mW and F(t) to 37 ops/s, which makes it possible to effectively 
detect attacks even without taking into account T(t). 

IV. ADAPTIVE DATA COLLECTION ALGORITHM TO PROTECT 

WMDS FROM DEPLETION ATTACKS 

In this work, we propose an adaptive data collection 
algorithm designed to enhance the energy efficiency and 
resilience of WMDs against EDA targeting them. The 
algorithm dynamically adjusts data sampling frequency and 
selectively filters incoming requests to minimize energy 
consumption 𝐸(𝑡), thereby mitigating the impact of Sleep 
Deprivation and Jamming attacks. 

Methodology: 

1. The frequency of data collection is adjusted by the 
formula: 

 

Where is: 

B(t) is the current battery level, 

Bhigh, Blow – charge thresholds, e.g., 80% and 20%, 

Fmax, Fbase, Fmin – maximum, base, and minimum sample 
rates, 

α is the adaptation coefficient (selected experimentally). 

Example of work: 

At high charge (B(t)≥80%), the device operates in 
maximum mode (Fmax=10 Hz). At medium charge 
(20%<B(t)<80%), the frequency decreases linearly  

2. Ignoring Out-of-Interval Queries 

The device is configured to respond only during predefined 
time windows (e.g., every 100 ms). Any requests received 
outside of these allowed intervals are automatically blocked. 
This strategy helps prevent energy-depletion attacks, including: 

– Sleep deprivation, where the device is kept in an active 
state and prevented from entering low-power sleep modes; 

– Jamming and flooding attacks, which overwhelm the 
network or individual nodes with continuous requests. 

By ignoring out-of-interval activity, the system significantly 
reduces unnecessary energy consumption and enhances 
resilience against various types of attacks.. 

3. Dynamic Transfer Timeout 

If the communication channel is loaded (Jamming attack), 
the device increases the intervals between transmission attempts 
(exponential backoff strategy) or switches to a backup channel 
(if available). 

 

4. Energy model 

The following equation represents a comprehensive energy 
consumption model for sensor nodes in WMD. This model is 
used to evaluate and optimize the energy efficiency of node 
operations during various stages of activity, including sensing, 
processing, communication, and sleep modes: 

 

where: 
Etotal(t) - total energy consumed by the node over time 𝑡; 
Ewu(t) - energy required to wake up the microcontroller or 
sensing unit from sleep mode; 
Em(t) - energy consumed during the measurement (sensing) 
of environmental parameters; 
Eproc(t) - energy used for processing the collected data (e.g., 
filtering, aggregation, encryption); 
Etx-wu - energy consumed to wake up the radio module 
before data transmission; 
Etr(t) - transmission energy, dependent on the size of the 
data and communication distance. 
Er(t) - energy spent on receiving data, including idle 
listening and processing of incoming packets; 
Esleep(t) - energy consumed during sleep mode. It is 
typically shallow but accumulates over long durations. 

Each energy component can be further expressed as: 

Ex(t)=Px
.. tx . 

By decomposing the total energy consumption across 
operational modes (such as sensing, processing, transmission, 
reception, sleep, etc.), the model enables the following: 

 Accurate assessment of each mode's contribution to the 
overall energy usage. 

 Identification of bottlenecks and energy-intensive 
phases, such as frequent wake-ups of the radio module or 
excessive data transmissions. 

 Informed decision-making regarding dynamic 
adjustments to node behavior, such as increasing sleep 
durations, reducing sensing frequency, or aggregating data 
before transmission. 

 Optimization of clustering and routing algorithms based 
on the actual energy consumption patterns of each network 
participant. 

Thus, the model serves as a foundation for developing 
energy-efficient adaptive protocols. 

Figure 4 demonstrates how the algorithm dynamically 
changes the sampling frequency F(B(t)) depending on the 
current battery charge level B(t), switching between the 
maximum Fmax, base Fbase, and minimum Fmin frequencies by 
the specified charge thresholds Bhigh, Blow, and the adaptation 
coefficient α. 
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Figure 4. Adaptive sampling frequency as a function of battery level in 
energy-constrained systems. 

The evaluation results are summarized in Table 1, which 
highlights key performance improvements achieved by the 
proposed algorithm under simulated attack conditions. 

TABLE 1. PERFORMANCE COMPARISON BEFORE AND AFTER 
APPLYING THE ADAPTIVE ALGORITHM 

Metric 
Before 

Algorithm 

After 

Algorithm 
Improvement 

Battery life (hours) 12 16.2 +35% 

Average power 

consumption (mW) 
720 520 –27.7% 

False Positive Rate 
(FPR) 

— 6.8% — 

Communication latency 

(ms) 
110 115 

+4.5% 

(tolerable) 

Synthetic data were generated using the Python 
programming language and the NumPy library for the purpose 
of plotting the graphs. Visualization was carried out using the 
Matplotlib library. This approach enabled the reproduction of 
typical trends and anomalies observed during attacks on the 
power system of wearable devices.  

Simulation results and real-world emulation were used to 
measure key indicators such as battery life extension, false 
positive rate, and latency to assess the efficiency of the 
proposed adaptive data collection algorithm. The algorithm 
demonstrated up to 35% improvement in battery runtime under 
simulated attack conditions, with a false alarm rate below 7% 
and negligible communication latency. These results confirm 
the feasibility of implementing lightweight defensive 
mechanisms without compromising the primary medical 
functions of the device. 

However, practical deployment in heterogeneous wearable 
environments requires careful calibration of threshold 
parameters (e.g., sampling rate boundaries, timeout intervals), 
considering device-specific hardware constraints and patient 
activity patterns. Moreover, adversarial attacks may evolve to 
mimic normal conditions more closely, requiring continuous 
updates to detection models. Thus, a holistic and adaptive 
strategy combining statistical monitoring, machine learning, 
and behavior profiling offers a viable path forward. This 
integrated approach not only strengthens the resilience of 
WMDs against energy depletion threats but also supports their 
long-term autonomy and reliability in critical healthcare 
scenarios. 

V. CONCLUSION 

This study explored the energy vulnerabilities of WMDs 
and proposed a systemic approach to their protection. A review 
of existing energy-saving methods revealed their insufficient 
resilience to attacks, confirming the need for specialized 
solutions. The paper introduced a classification of threats based 
on OSI levels, developed defense strategies, and presented a 
methodology for attack detection. Despite the achieved results, 
further development is required, including experimental testing 
in real-world conditions, investigation of the scalability of the 
proposed methods, and adaptation of defenses to emerging 
attack types. Future research should focus on developing hybrid 
strategies to ensure comprehensive cybersecurity for WMDs. 
The proposed approach lays the foundation for creating a 
multilayered protection system that enhances energy efficiency, 
fault tolerance, and autonomy of modern WMDs, particularly 
critical in the context of growing cyber threats. 
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