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Abstract— Oncology faces an unprecedented challenge in 

knowledge management, with clinicians required to process over 

4,000 new research publications monthly while administrative 

tasks consume 30-40% of their time. This paper introduces 

CHAIN.CARE, a specialized AI-driven medical research 

assistant built specifically for oncology. The system employs a 

novel multi-agent architecture underpinned by a semantic 

reasoning engine and an extensive oncology-specific knowledge 

graph comprising 20 million entities and 115 million 

relationships. Privacy and data sovereignty concerns are 

addressed through a federated learning approach that enables 

knowledge sharing without compromising sensitive patient or 

institutional data. We demonstrate through pilot deployments 

that the system reduces documentation time by 40% while 

providing contextualized research insights. Our evaluation shows 

high precision (92.3%) and recall (89.7%) in identifying relevant 

literature for specific oncological queries, significantly 

outperforming general-purpose information retrieval systems. 

This work represents a significant advancement in specialized AI 

systems for clinical knowledge management and workflow 

optimization in oncology. 
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I.  INTRODUCTION  

THE volume of medical literature is growing at an 
unprecedented rate, with PubMed adding over 4,000 cancer-
related research publications monthly [1]. This information 
explosion creates an insurmountable challenge for oncologists 
who must stay current with emerging research while managing 
increasing administrative workloads that consume 30-40% of 
their clinical time [2]. The consequences of this knowledge 
gap are profound, potentially leading to suboptimal treatment 
decisions, delayed adoption of novel therapies, and ultimately, 
compromised patient outcomes. 

While general-purpose large language models (LLMs) 
have demonstrated impressive capabilities in information 
retrieval and synthesis [3], they lack domain-specific 
optimization for oncology and integration with clinical 
workflows. Additionally, they present significant privacy 
concerns when deployed in healthcare settings [4]. Oncology 
poses particular challenges due to its rapidly evolving 

knowledge base, the complexity of cancer biology, and the 
critical nature of treatment decisions. 

To address these challenges, we present CHAIN.CARE, a 
domain-specific AI system designed expressly for oncology 
research assistance. Our approach differs from existing 
systems in three key aspects: 

1. A specialized knowledge graph with deep 
oncological context comprising 20 million entities 
and 115 million relationships 

2. A multi-agent architecture that separates 
documentation, knowledge navigation, and 
optimization functions 

3. A privacy-preserving federated learning approach 
that enables cross-institutional knowledge sharing 
without compromising sensitive data 

In this paper, we detail the architecture and 
implementation of CHAIN.CARE, present the results of initial 
clinical validation, and discuss implications for clinical 
practice and future research. 

II. RELATED WORK 

1) A. AI Systems in Clinical Decision Support 

AI-based clinical decision support systems have evolved 
significantly over the past decade. Early rule-based systems 
like Mycin [5] have given way to sophisticated machine 
learning approaches. Recent work by Vasey et al. [6] 
demonstrated that transformer-based models can achieve 
performance comparable to specialists in diagnostic tasks. 
However, these systems typically focus on diagnostic 
assistance rather than research navigation and synthesis. 

IBM Watson for Oncology [7] represents one of the first 
attempts to apply AI specifically to oncology, but faced 
challenges in clinical adoption due to integration difficulties 
and accuracy concerns in real-world settings [8]. Google's 
DeepMind Health [9] has shown promise in specific 
applications but does not provide comprehensive research 
assistance integrated with clinical workflows. 

2) B. Knowledge Graphs in Healthcare 
Knowledge graphs have emerged as powerful tools for 

representing and reasoning about medical knowledge. Wang et 
al. [10] developed a biomedical knowledge graph focusing on 
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drug interactions, while MedKG [11] aims to capture general 
medical knowledge. These approaches demonstrate the utility 
of graph-based knowledge representation but lack oncology-
specific optimization. 

The UMLS (Unified Medical Language System) [12] 
provides a comprehensive medical ontology but does not 
capture the dynamic relationships between entities that 
characterize cancer research. Our approach builds upon these 
foundations while developing specialized oncological 
knowledge representation. 

3) C. Federated Learning for Privacy Preservation 
Federated learning has gained attention for its ability to 

train models across decentralized data sources without sharing 
raw data [13]. McMahan et al. [14] introduced the 
foundational approach, while recent work by Rieke et al. [15] 
has applied these techniques specifically to healthcare. Kaissis 
et al. [16] demonstrated federated learning for medical 
imaging analysis, preserving privacy while achieving 
performance comparable to centralized training. 

These efforts highlight the potential of federated 
approaches but have not been applied to knowledge-intensive 
tasks such as research synthesis in oncology. Our work 
extends these techniques to the domain of clinical knowledge 
management with a focus on oncology. 

III. SYSTEM ARCHITECTURE 

CHAIN.CARE employs a multi-agent architecture 
designed to handle the complexities of oncological research 
assistance while maintaining modularity and extensibility. Fig. 
1 illustrates the system's overall architecture. 

 

Figure 1: CHAIN.CARE System's Overall Architecture 

A. Multi-Agent System 
The multi-agent system comprises three specialized agents: 

1. Documentation Agent: Handles extraction and 
structuring of clinical information, generating 
appropriate documentation, and managing 
administrative workflows. 

2. Knowledge Navigation Agent: Processes user 
queries, navigates the knowledge graph, retrieves 
relevant research, and synthesizes information into 
clinically actionable insights. 

3. Optimization Agent: Continuously improves system 
performance through user feedback, identifies 
workflow inefficiencies, and provides personalized 
suggestions based on usage patterns. 

These agents communicate through a shared memory 
architecture while maintaining separation of concerns. This 
design enables independent improvement of each component 
while ensuring coherent system behavior. 

B. Semantic Reasoning Engine 

The semantic reasoning engine serves as the cognitive core of 
CHAIN.CARE, employing a specialized oncology knowledge 
graph with 20 million entities and over 115 million 
relationships. This knowledge representation captures the 
complex interactions between: 

● Cancer types, subtypes, and molecular classifications 

● Treatment protocols and their historical evolution 
● Genetic alterations and their clinical implications 
● Drug mechanisms and resistance patterns 
● Clinical trial outcomes and patient stratification 

approaches 

The reasoning engine employs a hybrid approach 
combining symbolic reasoning with neural methods. 
Specifically, it uses: 

1. Graph neural networks for representation learning 
and relationship prediction 

2. Attention mechanisms for identifying the most 
relevant information contexts 

3. Logical inference for maintaining consistency and 
clinical validity 

The knowledge graph is continuously updated through 
both manual curation by oncology experts and automated 
extraction from new literature, ensuring currency in this 
rapidly evolving field. 

IV. FEDERATED LEARNING APPROACH 

A key innovation in CHAIN.CARE is its privacy-
preserving federated learning approach. This methodology 
enables knowledge sharing across institutions without 
exposing sensitive patient data or proprietary institutional 
protocols, addressing a critical barrier to AI adoption in 
7healthcare. 

A. Federated Learning Framework 
Our federated learning framework, illustrated in Fig. 2, 

enables distributed model training across multiple healthcare 
institutions without centralizing data. 
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Figure 2: CHAIN.CARE Federated Learning Framework 

The process follows these steps: 

1. Each participating institution trains local models on 
their data 

2. Model parameters (not data) are shared with a central 
server 

3. Parameters are aggregated using secure multi-party 
computation 

4. Differential privacy techniques add noise to prevent 
identification 

5. Updated global model is distributed to all institutions 
6. Institutions fine-tune the model for local needs 

B. Privacy Preservation Mechanisms 
To ensure robust privacy guarantees, CHAIN.CARE 

implements multiple layers of protection: 

1. Local Computation: Raw patient data never leaves the 
originating institution. 

2. Differential Privacy: We employ a moment accountant 
mechanism [17] that adds calibrated noise to model 
updates, preventing reconstruction of individual data 
points while maintaining utility. 

3. Secure Aggregation: Homomorphic encryption enables 
computation on encrypted parameter updates, ensuring 
that even the central server cannot access individual 
institution contributions [18]. 

4. Federated Knowledge Distillation: Rather than sharing 
raw model parameters, we employ knowledge distillation 
techniques where institutions share prediction patterns on 
public data [19]. 

Our approach achieves ε-differential privacy with ε≤2.5, 
providing strong theoretical guarantees against information 
leakage while maintaining model performance. 

C. Knowledge Graph Enrichment 
Beyond model training, our federated approach also 

enables collaborative knowledge graph enrichment without 
compromising data sovereignty. New relationships discovered 
in local data can be abstracted, validated, and incorporated 
into the global knowledge graph using privacy-preserving 
federated graph learning techniques [20]. This approach 
allows institutions to benefit from collective knowledge while 

maintaining control over their data and complying with 
regional regulations like GDPR in Europe or HIPAA in the 
United States. 

V. FEDERATED LEARNING APPROACH 

We evaluated CHAIN.CARE through both technical 
performance metrics and real-world clinical deployment. This 
section summarizes our key findings. 

A. Technical Performance 
We assessed the system's information retrieval capabilities 

using a test set of 500 oncology-specific queries developed 
with expert oncologists. Table I shows the performance 
comparison with baseline systems. 

TABLE I: COMPARISON OF INFORMATION RETRIEVAL 
PERFORMANCE 

System Precisio
n 

Recall F1 
Score 

Query 
Time (s) 

PubMed 0.762 0.691 0.725 3.21 

Google Scholar 0.814 0.775 0.794 1.85 

General LLM 0.867 0.834 0.850 2.37 

CHAIN.CARE 0.923 0.897 0.910 0.94 

CHAIN.CARE significantly outperformed general-purpose 
systems in precision, recall, and speed. The specialized 
knowledge graph proved particularly advantageous for 
complex queries involving multiple cancer subtypes or 
treatment modalities. 

B. Clinical Pilot Results 
We deployed CHAIN.CARE in three oncology 

departments (two academic, one community-based) for a 12-
week pilot involving 28 oncologists. Key findings include: 

1. Time Efficiency: Documentation time decreased by 
40.3% (±5.2%) across all users, representing 
approximately 10.7 hours saved weekly per physician. 

2. Literature Awareness: Users reported an average 76% 
increase in awareness of relevant recent publications, 
with 82% reporting at least one instance where system-
provided research directly influenced treatment 
decisions. 

3. User Satisfaction: Net Promoter Score of 72, with 
particularly high ratings for literature synthesis 
capabilities (4.6/5) and workflow integration (4.3/5). 

4. Learning Curve: Average time to proficiency was 4.7 
days, with 90% of users reporting comfort with all 
system features within two weeks. 

C. Privacy Evaluation 

We conducted a privacy analysis using both theoretical 
guarantees and practical attacks. No significant information 
leakage was detected through model inversion or membership 
inference attacks. The system maintained performance while 
satisfying differential privacy guarantees with ε≤2.5. 
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VI. DISCUSSION AND LIMITATIONS 

A. Clinical Implications 

CHAIN.CARE demonstrates the potential of specialized 
AI systems to address the specific challenges of oncology 
knowledge management. By reducing administrative burden 
and enhancing research awareness, such systems may help 
narrow the gap between research advances and clinical 
implementation. The observed influence on treatment 
decisions highlights both the opportunity and responsibility 
associated with AI-augmented clinical practice. While the 
system presents information, final decisions remain with 
clinicians, maintaining appropriate human oversight of clinical 
care. 

B. Technical Limitations 
Several limitations must be acknowledged: 

1. Knowledge Graph Completeness: Despite extensive 
coverage, the knowledge graph cannot capture all 
oncological knowledge, particularly emerging concepts 
not yet formalized in the literature. 

2. Causal Reasoning: The system's ability to reason about 
causal relationships (e.g., why certain treatments fail in 
specific patient subgroups) remains limited compared to 
expert oncologists. 

3. Federated Learning Challenges: Performance depends 
on the quality and distribution of data across 
participating institutions, potentially disadvantaging 
smaller or specialized centers. 

4. Evaluation Metrics: While time savings and user 
satisfaction are important, impact on patient outcomes 
requires longer-term studies currently underway. 

C. Future Work 

Ongoing and planned work addresses several key areas: 

1. Multilingual Support: Extending capabilities to 
support non-English medical literature, enhancing 
global accessibility. 

2. Patient-Facing Components: Developing 
appropriate interfaces for patient education and 
engagement, with careful attention to 
comprehensibility and emotional impact. 

3. Causal Inference: Incorporating causal reasoning 
capabilities to better explain treatment outcomes and 
generate testable hypotheses. 

4. Long-term Outcome Studies: Assessing the impact 
of research-informed decision making on patient 
outcomes through prospective clinical studies. 

CONCLUSION 

CHAIN.CARE represents a significant advancement in 
specialized AI for oncology research assistance. By combining 
a domain-specific knowledge graph, multi-agent architecture, 
and privacy-preserving federated learning, the system 
addresses the critical challenges of information overload and 
administrative burden in oncology practice. 

Our validation demonstrates substantial time savings and 
improved research awareness among practicing oncologists. 
The privacy-preserving architecture enables knowledge 
sharing across institutions while respecting data sovereignty 
and confidentiality requirements. 

As oncology continues to advance toward precision 
medicine, AI systems that effectively manage knowledge 
complexity while integrating seamlessly into clinical 
workflows will become increasingly valuable. CHAIN.CARE 
offers a template for how domain-specific AI can augment 
specialist capabilities in knowledge-intensive medical fields. 
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