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Abstract— It is shown that practical applicability of any 

noncontradictory form of probability theory is ensured by a 

probability model. The class of stable distributions laws 

conforming to kinetic equations is considered. The interpretation 

of stable power distributions is suggested as indicators of 

hierarchic or/and diffuse systems with inverse connections. 
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I.  INTROHDUCTION 

Galileo's remark of mathematics as a universal language of 
science became banal long ago. At the same time, the 
researchers who use this universal language every day suggest 
pairwise non-conformable statements. For example, L.D. 
Landau made some remarks "about truths so general that any 
kind of their particular application is impossible" and 
practically simultaneously E. Wigner published his articles 
about "Incomprehensible efficiency of mathematics" [1]. The 
authors of this report consider that contraposition of Landau's 
and Wigner's points of view is based on misunderstanding: 
mathematics is really the language of natural and other 
quantitative sciences. But it is just the language but not the 
subject, and due to the reason mentioned the contraposition of 
idealizations of quantitative sciences and mathematics is 
devoid of sense. Indeed: subject to self-consistency, the 
concept of validity of theory is only correct concerning 
idealizations accepted in the theory. The following myth is 
widespread: the validity of a quantitative theory axiomatized 
can be verified by an experiment. To reject the myth, suffice it 
to remind the story of Gilbert's problems. Namely: in 1900 D. 
Gilbert with his problem No. 6 assigned the task of 
axiomatization of physics and some fields of physics obtained 
axiomatics. The axiomatization of thermodynamics made by 
Carathéodory was especially elegant. At the same time, the 
reduction of disbalance thermodynamics and physical kinetics 
to the axioms of probability theory has not been crowned with 
success so far [4, 5]. This fall-through did not discourage the 
experimentalists and did not influence the rate of flow of 
applied publications with the use of probability theory. In the 
authors' judgment, the reason for the neutral attitude of 
practitioners to the axiomatization of probability theory is well 
explainable. Namely: the researchers using the probability 
theory /P.T./ in applied problems are convinced: the axiomatic 
A.N. Kolmogorov theory [2] is the ground for application of 
P.T. in practice, but, nevertheless, the algorithm of statistical 
manipulation of experimental data is based on intuitively clear 
ideas by Fond-Mises [3]. 

II. STATEMENT OF QUESTION 

Kolmogorov's axiomatics eliminated a lot of ambiguities of 
probability theory but firstly, this axiomatics is not the only one 
and secondly, axiomatic theories are not at all related to 
practice. For instance, the statement "the value of the 
measurand is covered with the interval [a,b] with the 
expectancy 0.95" has no sense within the framework of 
axiomatic theory. Sense (interpretation) only appears while 
building a probability model but the adequacy of a model is not 
the subject of probability theory. Mathematical language does 
not only give the possibility of constructing exact expressions 
but as well "automatizes" judgments, generates corollaries 
which are unexpected for the language user. 

Incidentally, the nontriviality of probability theory as a 
dialect of mathematics is confirmed by the well-known 
paradox of intervals: {Xn} is the set of normally distributed 
chance quantities, Sn=X1 + X2 +X3….+Xn; in accordance with 
the central limit theorem 
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Here D is variance, m is mathematical expectation, for any 
fixed n the following statement is true: the inequality  
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is performed with the probability of 95% and at the same time, 

the probability of performing these inequalities for all n ( )n
 

amounts to nothing. The paradox mentioned has the apparent 
explanation but the applied probability theory also has real 
problems [6, 7]. The authors of the report attribute to such ones 
the task of constructing wide enough classes of probabilistic 
models admitting the numerical analysis and constructive 
definition of the family of stable distributions. The last task is 
important on the reason that as a result of preconceived 
interpretation of "the law of large numbers" the following 
conviction became widespread amongst physicists and applied 
probability theory specialists: stationary solutions of kinetic 
equations asymptotically tend to distribution from class (A):  
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where 
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  is standard deviation; Xc is the centroid of distribution 

coordinate, Г(z) is gamma-function and   is certain constant 

characteristic for this distribution – its exponent. As 
distribution is characterized by the three parameters  , σ and 

Xc, it allows to cover the wide class of well-known 
distributions: if 1  then it is Cauchy distribution; if 1  

then it is Laplace distribution; if 2  then it is normal; if 

1  then it is trapezoidal; if   is infinite then it is 

proportional. 

It is really a wide enough (from the point of view of 
practice) class of distributions but applied statistics uses other 
ones as well for more than 90 years. In particular, sociology, 
biology and some other sciences studying the epigenetics 
quantitatively use the distributions with densities of the kind of  
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and Holtsmark and Pareto distributions with the parameter 

1   












1,1

1,
}{

x

xx
xXP





and many others which are not expressed by the way of 
elementary functions. Characteristic property of these 
distributions called "Stable Laws" is  

1 1 2 2( ) ( ) ( )F a x b F a x b F ax b     

Here   is the symbol of convolution product. That is, these 

distributions form the convolution product hemigroup. With 
the help of Lie group theory it is possible to construct all 
characteristic functions of stable laws and to give the 
descriptive characterization of the procedure of averaging in 
the terms of theory of measure. The authors do not share L.D. 
Landau's sarcasm but agree with the fact that the above 
mentioned procedure of averaging cannot be usable for a 
researcher.  At the same time, the authors do not consider it 
possible to confine ourselves to "explaining just using 
dactylonomy" for quantitative investigation: even the 
distribution function is not completely evident and 
experimentally observed. 

III. TASK SOLUTION 

By the above mentioned reasons the authors define the 
distribution function ostensively with the help of Boltzmann 
type kinetic equation [5].   
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With [R] symbol we re-denoted the stream and other 
resource terms. Further on, we take into account that for the 
Maxwell-Boltzmann type systems the principle of detailed 
balance is implemented: 

( , ; , ) ( , ; , )k x y v u k v u x y 

From the symmetry of the equation kernel and detailed 

balance results the following: 
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In the expression (2) [R] only depends on time. If [R]=R(x), 
then denoting 
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(3) 
Now we postulate obtaining the balance, then the left part is 

reduced to zero and we get the condition of reducing to zero for 
the right part: fequilibrium(v)*feq.(u)=feq.(x)*feq.(y) 

)()()()(mequilibriu yfxfufvf eqeqeq   

a functional equation has the solution 

bx

eq aexf )( . 

So, one of equilibrium distribution functions actually belongs 
to class (A). Careful analysis shows that the fact 
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we did not use anywhere and the equation (1) has the 

exponential solution only at k=const. And at axk   we get the 

Pareto type stationary solution. It is easy to see that the 

condition axxk )(  conforms the positive feedback! And that 

is enough for qualitative understanding of Holtsmark 

distribution describing the gravitating stars system. For the 

general case of stable power laws it is sufficient to select the 

kernel of the base equation (1). With this purpose in mind we 

use the heuristics of the work [8] 

  
( 2 )( , ; , ) ( ) ( ) ( ) ( ) ( );n n c x y ak x y v u v u x y x y e x y v u        

(4) 

( , ; , ) ( , ; , );k x y v u k v u x y
       (5) 

 xttxk )(),(  ( 0, 0);                         (6) 

11 ( , ) ( , )
( , ) 0;

( )

f x t f x t
x x f x t

t U t t

 


 
  

             

(7)

 

( ,0) 1;f x dx





      (8) 

)()(),( xtdxtxf  ,            (9)
 

where 

1)0(  , 

11 ( ) 1 ( )
1;

( ) ( ) ( )

t d x
x x const

U t t t x dx

  
 

  

 
      

    
(10) 









 
t

dttUt
0

)()1(exp)(  .

  (11) 

Here: (5) Means the renunciation of the principle of 
detailed balance, moreover, (4) has the characteristic 

( , ; , ) ( , ; , )k x y v u k v u x y  

if 
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in regard to condition (6) we note: we choose it from 
considerations of simplicity. Now let's assume that we can 
confine ourselves to the condition of self-consistency and using 
the characteristics of delta function we integrate equation 10. 
We get: 



























































































1,)(
1

1
exp

1

1,
1

1,
)1(

1
exp1

)1(

1
exp

1

)(

11

1

1

1
































x
x

x

x

x
 

(12)

 

 IV. CONCLUSIONS

 

1) The difficulties conjugated with the notion of 

probability of the same type as the "number" notion which is 

not much added to the intuitive comprehension by Peano-

Russel axiomatics. 

2) Every probability model in quantitative science has the 

difficulty associated with the definition of the set in relation to 

which the averaging is performed. 

3) The mechanisms resulting in exponential (a) and power 

(b) stable laws allow analytical description with one 

Boltzmann type model equation.   

4) Boltzmann equation is solved by two classes of stable 

laws: a) exponential and b) power /including hyperbolic ones/.  

5) Power distribution laws are immanent to hierarchic 

and/or diffuse systems with positive feedback and, 

consequently, can serve as their indicators.  
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