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Abstract - We propose a model of stock price evolution with 

Gaussian martingale, investigate it’s properties and consider 
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this model. 
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  On the probability space ),)(,,( 0 PFF Nnn   we 

consider the following real valued stochastic process in 
discrete time as a model of stock price evolution 
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Here 11 )(,)(  nnnn ba  are positive sequences of real 

numbers, ,,...,2,1,0),,( NnFMM nn   is the Gaussian 

martingale with quadratic characteristic   .2
nn
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     In this paper we investigate some properties of 
proposed model (1)-(4). The following results are obtained:  

Theorem 1. In scheme (1)-(4) the covariance 
),cov( 1 nnh   between logarithmic return 1nh  at moment 

1n  and volatility n  at next moment n  is negative for any 

Nn ,...,2,1,0 , i.e. model (1)-(4) has fixed so called leverage 

effect.  

Proof . It is clear, that from (1)-(4) 
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for any n and  
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     Using properties of Gaussian martingale we obtain 
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  (7)              

    

Note, that 1 nM  has normal distribution with mean 0 

and variance 1 nM  for each n  and  
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because 0nb  for each n . 
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     From (5),(6) and (7)it is clear that ),cov( 1 nnh  <0. 

The proof of Theorem 1 is completed. 

     Note, that this effect was discovered by F.Black in 
1976 for real financial time series, and the sense of this effect 
is that falling down of  return implies increasing of volatility 
(see [1] about EGARCH,TGARCH, HARCH-models). 

   Theorem 2. In scheme (1)-(4) for any moment of time 
n  kurtosis coefficient nk  of logarithmic return nh  is 

positive. 

Proof . We know (see (5)) that 0nEh  for each n  and 

therefore kurtosis coefficient  
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and from (9) using (10) and (11) we obtain 
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but nM  has the normal distribution with expectation 0 

and kurtosis coefficient 0, so 
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Using (13) from (12) we obtain, that 

0
)(

)(
3

1
)(

33
)(

3

22

224

22

4

22

4




















n

nn

n

n

n

n
n

E

EE

E

E

E

E
k













 

and the proof of Theorem 2 is completed. 

  It is known, that  (see [1]-[3]) for real financial time 
series the empirical kurtosis coefficient of logarithmic return 
is usually positive. 

Forecasting. Consider the forecasting of stock price 

,,...,1,0),,( NnFSS nn   described by (1)-(4) on the one step, 

i.e. the problem of finding ),/()1(ˆ
1

S
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},{ nkSF k
S
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   From (1)-(4) we have  
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where 2
nn EMM   and it is clear, that )(SMM nn   is 

S
nF -measurable because 
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Remark 1. It is not difficult to obtain the forecasting of S  

on m  step, i.e. )/()(ˆ S
mnnn FSEmS  , nm  using the 

representation following from (1)-(4) 
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Remark 2. In our financial market described by (1)-(4) 
consider risky asset with the following price evolution  
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