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Abstract— The method of the solution of problems of free 

fluctuations of viscoelastic elements of designs from a linear 

viscoelastic material Is developed at any hereditary kernels. 

Expressions of frequency and factor of attenuation of viscoelastic 

fluctuations which an averaging method were approximately 

received for the first time by the outstanding scientist of the XX 

century A.A.Ilyyushin and his employees are specified. The method 

is based to an original approach of calculation of poles of subintegral 

function in Mellin's formula at any, not set analytically, hereditary 

kernel of a relaxation. It open a way of application of integrated 

transformation of Laplas to the solution of non-stationary dynamic 

problems of a viscoelastic with real rheological properties. 
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I.  INTRODUCTION 

The recently observed intensive introduction of new materials 
– polymer –based, nanocomposites, in contemporary machine and 
instrument engineering caused a great interest for studying the 
dependence of their physical -mechanical   properties on the 
internal structure. As is known, the synthesis of materials with the 
given physical - mechanical properties concerns the rank of 
―eternal‖ problems of mechanics of materials and material science.  
These problems became especially urgent in the last two decades 
when the structure of the material could be controlled on the level 
of separate molecules and even atoms. Deviation of quality 
characteristic of structural components is a very important 
problem without which quality description and prediction of the 
properties of polymer nanocomposites may not be performed.    
Similar problems were solved in the papers of the authors [2-8] in 
different statements and by other methods. The solution of one-
dimensional dynamical problems of linear viscoelasticity   under 
arbitrary hereditary kernels vere first investigated in detail in the 
papers of M. Kh. Ilyasov [9]. 

II. PROBLEM STATEMENT 

For investigating free vibrations of viscoelastic  bodies we’ll 
solve the  homogeneous equation  

           ∫  (   ) ( )           
 

 
            (1)                                

with the following initial conditions 

 ( )         ( )                                      (2)                     

Using the Laplace transformation, we get the following 

representation of the solution of problem (1), (2)  

 ̅ ( )  
      

          ̅ ( )
                            (3)                                      

where the dash over the letter indicates  integral 

transformations of the functions having  the same 

name, for instance,   ̅ ( ) means the Laplace integral 

       ̅ ( )  ∫  ( )
 

 
       

p is a complex parameter of  transformation. The 

function  ̅ ( ) represented by formula (3), and the 

transform of the relaxation kernel  ̅ ( ) are analytic 

in the Wight half-plan Re p>0   of the complex plane 

p. It we denote   ( )   ( )  and    ( )    ( ), 

we can write problem (1)-(2) in the vector form  

  ( )    ( )       ∫  (  
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 where         ( )     (  ( )   ( ))  
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Applying to equation (4) then Laplace transform, we 
get   

  ̅      =Y ̅+         ̅  ̅   or   [     
      ̅ ( )] ̅    ,  

Where I is a unit matrix. Let the following condition be 

fulfilled:  

    (             ̅ ( ))     

  (    ̅ ( ))      for Rep 0                (5) 
 Then multiplying the last equality from the left by 

the improper matrix   

 ̅ ( )  [           ̅ ( )]   ,   we get  the 

followine expression       

 ̅  [             ̅ ̅  ( ) ]                (6)                                             

This formula expresses the solution to problem (4) 
in Laplace transforms. The function Z(t)  is called a 
resolvent of the equation (4). As it follows from the 
expression of is  representation, the resolvent   Z(t)  is a 
unique  solution of the matrix problem. 
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The original of solution (6) in written in the form  ( )  
 ( )   (t  ). By fulfilling condition (5), the representation of 

the resolvent has only a pole with negative real parts. Therefore,   

condition (5) is a necessary condition of uniform and asymptotic 

stability of the solution of problem (4)   ( )   ( )   (t 
 ). Since by inequality (4) in the half-plane   Re    …we 

have the estimates  

|  ( )|   ∫  ( )
 

 
|    |    ∫  ( )

 

 
     The 

condition (5) follows from condition (4). Thus, condition (4) 

provides uniform and asymptotic stability of the solution of 

problem (1), (2). 
        Problem (7) may be solved by different approximate 

methods. For example,      this problem has matrix solution    

 ( )      . Substituting        
V(t)  in (7), we get a 

problem for defining we function V(t)  

  ( )           ∫  (   )    ( )    ( )   
 

 
     (8)                      

Equation (8) shows that rate of change of the function V(t) in 

proportional to the small parameter ε, i.e. this function in slowly 

varying.  It is said that   equation (8) has a so called standard (by 

Lagrange) form. Therefore its solution my be sought by the 

averaging method.  In (5) it was done in this way. However, we’ll 

here obtain this solution by a more simple method. Suppose that 

Laplace transform T(i) is an analytic function in all it complex p-

plane except isolated singular points.  The inverse transformation 

of function (3) may be found by the following well known 

Bromwich (or Mellin)  formula 

  ( )  
 

   
∫

(      )   

          ̅ ( )

    

    
                               (9)                                    

 here   √   and integration is conducted  in the plane of 

complex variable p along an infinite straight  line parallel to  the 

axis and arranged so that  all-the singular points  ̅ ( )  are 

disposed from the left of this straight line. The integral usually is 

calculated by the residual theory. By this reason, it is necessary to 

know the poles and branching points of the integral expression 

that is assumed to be analytically continued to the left half of 

plane.  The poles are the roots of the  equation 

   +  (    ̅ ( ))                                                 (10) 

The left side of this equation coincides with he left side of 

inequality (5). If     ̅=0 (ultimate viscosity) or     ̅<0  

(supercritical viscosity). Then equation (7) has only real roots and 

vibrations don’t appear.  For    =0, equation (7)  has two 

imaginary roots       and         taking into account 

the equalities   ̅(   )          where    and     are sin 

and cos-Fourier    transforms of the kernel  ( )  on the left part of 
equation (7) we perform the following transformations:  

                   +  (    ̅ ( ))   

 (    √    ̅(  )) (    √    ̅(   ))               

 (    √       
    

 √     
  )(  

  √       
    

 √     
  

    

 √     
   )  

    where the remainder term of expansion is of order  

 (  )  Hence we find approximate expressions of the 

roots of the equation (10) 

        
    

 √     
    √      

 Therewith, equation (10) is verifies as follows: 
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 √     
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  (     )    (  )  
Formula (3)   accepts the form (1) 

  ̅ ( )   
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 √     
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Using the table of Laplace inverse transforms, we find 

the original 

 ( )   
    

 √     
 
[

      √       

   
    

 √     
   

 √     
     √      

  ] (  )              

        This function describes the damping vibrations 

with frequency  √       and the damping factor 
    

 √     
.  Availability of viscous resistance of material 

causes damping of free vibrations amplitude by 
exponential law and lower frequency of there 
vibrations. Therewith, the damping factor is 
proportional to sine - Fourier transform of the kernel  

   , the frequency decrease  to   cos - Fourier transform 
of  this kernel. If  we linearize  these expressions with 

respect to  , we get    

 T(t)=  
 

  
      *      (  

 

 
  )   

          ⁄

 (       ⁄ )
     (  

 

 
  ) +                    (12)  

        This is the known approximate solution of 
problem (1), (2) under general  form of relaxation 
kernel corresponding to the problem on Eigen 
vibrations of viscoelastic bodies and structural 
elements. Comparison of formula (11) and (12) shows 

that by linearization with respect to   the damping 

factor was reduced           times, vibrations frequency  

(     ) 
 

 

    inversed  *  
    

 

 (      ⁄ ) 
+
 

 

 
   

times compared to formula (11).  As we’ll see later,   by 
the present form, formula (11) is closer to the exact 
solution of problem (1), (2) than formula (12). After 
some mathematical operations we get the original by 

we solution in the form    . Note that this solution was 

constructed with regard to only two complexly – 
conjugated poles found for any relaxation kernel   (t) . 
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It is obvious that depending on the form of     (p) the mother poles 
and branching points of the function T(p) may also appear. As it is 
seen from (13) their continuations in the sol union are concert 

rated at the function   ( )       ….  It in formula (13) we 
neglect all terms under   sign  of sun and take into attention only 

the terms linear with respect to  , i.e. if we assume    
       ⁄     (     )  )⁄    then we get the result of  A.A. 
Ilyushin and his [1] -colleagues’ obtained by the averaging 
method, and  also  the result of the paper [2] -obtained  by the 

method of complex modules. For      and      the 
frequency and damping factor correspond to the results obtained 
in [10]. The solution consists of two parts. The first part describes 

the process of damping vibration with frequency    and the 

damping factor . The second part is called the transient part of 

the solution. This part is not vibrating and rapidly decreases as 

   . As it is seen from the obtained results, the frequency of 

viscoelastic vibrations is less than the frequency of appropriate 

elastic vibration  . For    convergent to zero viscoelastic 
vibrations become undamped vibrations with frequency 

 √ ( )  ( )   bat for sufficiently large   viscoelastic and 

elastic frequencies coincide, and vibroelastic damping factor 

achieves is, greatest value in modulus    ( )   ( )⁄ . 

III. CONCLUSIONS 

  The Laplace integral transform is applied to the solution of 
the problem on no stationary vibrations of structural elements 
whose properties are described by theory of linear viscoelasticity 
under arbitrary hereditary kernels. The representation of solution 
is written rather simple, however the calculation of the Laplace 
inverse transform that inevitably reduces to calculation of 
Bromwich (Melina ) integral method and residue theory is 
impossible if analytic dependence of hereditary kernels are not 
given. This situation was noted by the outstanding scientists 
Ilyuslin, Rabotnov and Christensen Difficulties are connected with 
impossibility of calculation of poles and branching points of the 
integrand function of Bromwich integral. The solution method of 
quasistatic problems of linear viscoelasticity under arbitrary 
dependence of hereditary kernels in time was suggested and 
grounded by A.A.Ilyushin. Dynamical problems of viscoelasticity 
are more complicated than quasistatic problems since here the 
reprentation of the problem irrationally depends on representation 
of hereditary functions.  The poles of the integrand function whose 
real parts are the damping factor, the imaginary parts are 
frequencies of viscoelastic vibrations, were found by sequential 
approximations beginning  with frequencies elastic vibrations. The 
convergence of the sequential approximations process was proved. 

Here the parameter of the kernel   is a small parameter. The 

existence of only two complexly conjugated poles was defined, 
the others, if they exist, may be only real negatives. The solution is 
obtained in the form of a series, its convergence proved, the 
obtained of the remainder tern of the series in reduced. It is shown 
that for sufficiently small values of time the frequencies of 
viscoelastic and elastic vibrations coincide ,the damping factor has 

its greatest value .The frequency  of viscoelastic 
vibrations is smaller than the appropriate frequency of 

elastic vibrations by  the quantity  , moreover, the first 

term of the series   with respect to degrees of the 

parameter of the  kernel    is proportional to cosine 

Fourier transform of relaxation kernel  , and the first  

term of the series of the damping factor a with respect 

to degrees of the parameter of the kernel    is 

proportional to the sine Fourier transform of relaxation 

kernel. If in these formulae we neglect all degrees of    

higher than one, then we get the results of solution of 
the appropriate problem on ligen vibrations of 
viscoelastic bodies and structural elements, obtained by 
A.A.Ilyushin, and his collages by the averaging method 
[1]. For sufficiently large values of time, a viscoelastic 
material behaves  as elastic one, i.e. the damping factor 
decreases converging to zero, and frequency of 
vibrations decrease and tends to its long-term value in 
which momentary modulus are replaced by long-term ( 
relaxed) elasticity modulus.   
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