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Abstract— We present the results of development of methods and 
algorithms for automatic real time identification of waveforms 
arrival from local earthquakes in increased level of man-induced 
noises for the purposes of earthquake early warning.  
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I.  INTRODUCTION  
Earthquake early warning systems (EWS) rely on the 

capability of advanced electronic systems to process and 
transmit information faster than seismic waves can propagate. 
The relevant information arrives a few seconds to a few tens of 
seconds before strong ground motion begins. EWS have 
proven the need to reduce losses in the earthquake [1].  

Most current systems rely on high density seismic 
networks. For example in Japan instruments are spaced every 
25 km across the entire country. However if there is no dense 
seismic network, for example, if the purpose of early warning 
is only protection of a large city or a nuclear power plant, a 
hybrid system with "single sensors" being incorporated in the 
overall early warning network [2]. As the seismic network 
collects more data on an earthquake, the predictions will 
improve, but the time until shaking will decrease. The single-
station approach is the fastest way to give warnings near the 
epicenter.  

Seismic stations are generally located in remote areas, as 
far as possible away from any human activity. Nevertheless, 
road and railway traffic, heavy industry, mining and quarry 
activities, extensively exploited agricultural areas, and many 
other sources of manmade seismic noise around the seismic 
stations, along with natural sources can be strong noise sources. 
If a seismic signal is noisy and the loss of information content 
even at one station only, it can decrease the effectiveness of the 
system.  

Thus, at the present stage there were following 
requirements to an EWS based on the "single sensor" principle: 

• Identification of first earthquake waves in a noise and 
determination of earthquake parameters. Information 
must be made accessible to external systems. 

• The system must be capable of operation after the 
waves due to the main event have arrived. The option 
of self-contained operation. 

• The use of fast algorithms. Simple maintenance and 
deployment, low costs. 

II. BACKGROUND 
The sufficiently complete information on an earthquake 

is obtainable in real time from the analysis of its first arrival 
based on recordings of a single seismometer. The automatic 
determination of the characteristics in question should be quite 
effective and will take about 3-5 seconds [3-7]. 

The noise seriously impedes the processing of 
seismograms. The standard detection methods of seismic 
waves are based on the assumption that the noise is stationary 
on a long enough segment of record. When a seismic record 
made in a megacity is to be analyzed, one has to deal with 
noise types having very diverse origin and characteristics. 
Also, the noise level is comparable with the amplitude of the 
signal to be detected. Thus it is impossible to make use of 
traditional detectors STA/LTA (Short Time Average to Long 
Time Average) and on others that model the signal/noise ratio. 

There is generally a database of recorded events for 
each specific region. The database includes sample 
seismograms to characterize both the earthquakes and the 
natural noise background occurring in the region since the 
start of observation. All existing classification methods use 
this database as the training set [8].   

The tests of the algorithm were carried out using 
seismic data from the real earthquakes, as well as the most 
recent large earthquake in Japan, March 11, 2011.  The 
efficiency of system operation was verified with the help of 
test samples of signals belonging to certain classes, i.e., both 
noise and earthquake ones, and these samples were not used in 
training of the neural network.  

The volume of the series was 2688 processes. The one 
part consisting of 2500 processes was used to debug the 
algorithm, while the testing was based on samples from the 
second part (188 samples).  

We shall restrict the notion of a "useful signal" to the 
first 4 seconds in the P wave of a near large earthquake.  This 
is a serious restriction, because of all possible signals we 
choose to deal with low-energy waves of earthquakes with 
certain parameters. First, we select epicentral distances in the 
range of 20 to 600 km. The damaged zone of a large 
earthquake is usually within this value, while at distances 
under 20 km the system is of little use. Secondly, the 
earthquake magnitude must exceed the value M6.5. An 
earthquake of magnitude M5 may also pose some threat. 
However, the damaged zone will correspond to the lower 
bound of the range of epicentral distance chosen. Thirdly, the 
focus depth is within 80 km. The rest is treated as noise. 

 
This work is conducted with the financial support of the European 

Community by the International Science and Technology Center (ISTC).  

 



 
 
 

                                                                                                                                     Baku, Azerbaijan 

IV International Conference “Problems of Cybernetics and Informatics” (PCI'2012), September 12-14, 2012
www.pci2012.science.az/3/04.pdf 

 

53

III. METHODS OF SIGNAL DETECTION 
Estimates show that the time difference between P and 

surface waves will be about 30 seconds when the epicenter is 
about 200 km distant from the monitoring site. Some users 
choose rather more warning time and may tolerate more errors 
of prediction. For example, schools may prefer to get the 
warning sooner so children can take cover. In the case of very 
short pre-warning times of few seconds, it is still possible to 
slow down trains, to switch traffic lights to red, to close valves 
in gas and oil pipelines, to release a SCRAM in nuclear power 
plants, etc.  

Our warning system is implemented to include three 
detection processes in parallel. Further, applying a decision 
rule we carry out the final earthquake detection and estimate its 
reliability. 

A. An Adaptive Algorithm for Detecting the Onset Times of 
Low Amplitude Seismic Phases 
The wavelet analysis has advantages in that it is possible to 

investigate not only stationary signals but also irregular series. 
In contrast to the standard filtering technique using the Fourier 
transform, the wavelet transform provides better 
representations of seismic wave onsets [9] and, secondly, 
requires a computation time for signal processing smaller by a 
factor of a few times. 

We shall illustrate the processing taking the example of a 
signal shown in Fig. 1. The first 10 seconds (see Fig. 2) involve 
data acquisition. It was assumed for the moment that the initial 
segment reflects the behavior of the process before the 
measurements began as regards its statistical characteristics. 
The next portion is shifted by one second and is processed in a 
similar manner. These portions are little different, except for 
the lateral edges. Since second 74, the process begins to 
change. Accordingly, so does the wavelet transform (Fig. 3). 
Two neighboring images are compared each second. When two 
consecutive images are significantly different, that marks a 
change from one state to another. That instant of time can thus 
be identified as the time of onset for low-amplitude seismic 
phases that precede an earthquake. 

Figure 1.  An example of a seismic signal.  

Figure 2.  Coefficients of the wavelet transform (scale) as functions of time.  

Figure 3.  Variation of the parameters in the process being discussed (the 
arrival of first onsets of the earthquake signal).  

The sequence of calculations consists of the following 
points:  

1. Transforming a vector Х with size 1:1024 elements (a 
segment of the original one-dimensional process lasting 10.24 
s) by the wavelet transform into a 1024x64 Y matrix. The 
matrix Y is treated as a color image.  

2. The image is divided into two halves whose textures 
are compared. If the criterion tells us that the two images are 
different, then the change point is found within the later half.  

3. A new Х vector is formed by a shift and by adding 
new 100 measurements at the end; the procedure is repeated. 

We use the co-occurrence matrix for comparing images. 
The color image Y is transformed to a gray-level image I. The 
co-occurrence matrix C is a 8х8 matrix and is determined by 
the number of gray-level values [10]. Several methods of 
texture characterization were proposed in the literature such as 
that of Haralik [11]. We choose among these parameters the 
most pertinent ones. We found that four parameters (Entropy, 
Energy, Contrast and Homogeneity) are sufficient for the most 
simulations that we have carried out. 

The co-occurrence matrix and the above features are 
calculated once every second for each half of the image. For 
the problem in hand, we chose to use the Euclidean distance as 
measuring the closeness of two images. In Fig. 4, the sequence 
of values of the Euclidean distance is shown as a broken green 
line. If that sequence is treated as a sequence of random 
numbers in time, then one can calculate estimates of current 
statistical characteristics for it (m_Dr and d_Dr), which are the 
mean and the mean square deviation, respectively. The mean 
m_Dr is shown by a black line. The two red lines mark the 
confidence interval m_Dr ± d_Dr. The statistical characteristics 
are calculated in real time using only preceding values in a 
random time sequence Dr. Consequently, the resulting 
estimates are biased. The criterion to distinguish between two 
adjacent images is the occurrence of the current value of Dr 
utside the confidence interval. 

Figure 4.  Coefficients of the wavelet transform (scale) as functions of time.  
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B. Identifying a Change Point in a Random Process and 
Signal Detection in a Moving Time Window 
There are the following important factors that impede the 

construction of optimal statistical processing procedures: (a) 
the statistical characteristics of earthquakes signals are not 
known beforehand and strongly vary from event to event and 
(b) seismic noise is nonstationary over long intervals of time, 
that is, its probability characteristics vary over time (in 
particular, because of changes in manmade activities in the area 
of seismic observations). 

The change of a random process xt , t � Z  is a sudden 
change in its statistical properties occurring at time t0. For 
example, a change-point of a stationary time series (s.t.s.) xt 
would be a change of its matrix power spectral density F(λ): 

 
Such a change arises, e.g., when the physical properties of 

the source that "generates" the time series xt changed at time t0 
or else another time series st was superposed on a time series ξ t 
: xt = ξ t + st , t > t0 , the superposed series being practically 
independent of the original. For Gaussian stationary time series 
ξ t and st with zero means, both these causes are equivalent 
(and so admit of the same mathematical treatment) [12]. 

The concept of the "fastest detection" is a traditional one in 
change-point problems [13] in which it is required to minimize 
the time required for correct detection of the change-point with 
a fixed probability of false alarms. The various options for 
optimality criteria of decision rules in the change-point 
problem as following from this concept, as well as the structure 
and characteristics of these rules can be found in [14]. 

However, in a number of cases (e.g., in signal detection) the 
time N allotted to decision making (whether or not a change 
has occurred) is strictly bounded from above, while a more 
rapid decision (for less than N) is simply meaningless. In that 
case, a change-point is better detected by the hypothesis testing 
method, whether or not a signal is available based on 
observations in a moving window xN (t) = (xt-N+1 ,..., xt), and 
optimal tests should be used to test these hypotheses, which 
maximize the probability of correct detection with a limited 
probability of false alarms.  

It sometimes is possible to construct an effective recurrence 
procedure to compute successive values g(xN (t)), t � N  of the 
optimal test statistic; in that case, the hypothesis testing method 
in a moving window turns out more advantageous in terms of 
computer resources. This is generally the case in the absence of 
exact prior information on the characteristics of the process xt  
after a change-point, when sequential algorithms become 
especially complex [15]. The procedure of detecting a change-
point in a process can be reduced to determining the values of 
the autocovariance matrices Rx

τ of xt in a moving time window 
and to subsequent computation, at each detection step, of a 
linear or a quadratic form consisting of all the elements of these 
matrices [16]. 

For the sake of brevity, we call the detection algorithm χ2 
detector: it responds to a change (compared with the power 
spectral density (PSD) of the noise) in the average power and 
average PSD of the observations within the moving window. 
The noise PSD is reflected in the parameters of autoregressive 
approximation of the noise and correlations, which are 
involved in the algorithm. We note that a change in the PSD of 
observations is detected by optimal manner according to the 
asymptotic performance criteria. The statistically optimal 
algorithms we have developed provide sufficiently accurate 
solutions to the problem of decision making when we are 
required to recognize the signal of a local earthquake. Such an 
investigation of the asymptotic properties can be carried out 
using the methods developed in [17-19]. 

C. A Method for Identifying Earthquake Onsets in Man-
Made Noise Using Artificial Neural Networks 
One efficient tool for event detection in the presence of 

noise is also the artificial neural network (NN) [20, 21]. 
However, these powerful tools have so far been of limited use 
as classifiers in the identification of seismic signals in noise. 

To deal with classification problems (earthquakes v. noise) 
we shall use a fully-connected NN with a feedforward 
structure, a multilayer perceptron (MLP) with a single hidden 
layer (see Fig. 5). The use of this architecture is frequently 
justified for dealing with many problems. Different neural 
networks can be used, since their areas of application intersect. 
We investigated whether it is possible to use artificial NN for 
the identification of seismic signal type. It has been made clear 
by how much neural networks are efficient as a classifier 
compared with the other available intellectual methods. The 
Neural Networks package in the MatLab system was chosen to 
simulate the structure of NN. 

MLP neurons are organized into several layers [22]. A 
neuron calculates a weighted sum of its inputs and transforms 
this in a nonlinear manner into an output signal. The activation 
function f (a nonlinear transformation) must be differentiable. 
This requirement is met by the sigmoid function we chose to 
use. Since the classification is to be into two classes 
(earthquakes and noise), MLP will contain a single output unit 
that describes the classification result. 

The structural diagram of the NN system for earthquake 
detection can be represented as follows (see Fig. 6). 

We have used the simplest back propagation training 
method. This is to be recommended when the data set is large 
and there are redundant data. 

 

 

 

 

 

 

Figure 5.  Structure of a multilayer perceptron with a single hidden layer and 
a single neuron in the output layer.  
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Figure 6.  Structural diagram of the neural networks system for earthquake 
detection.  

The Neural Networks package envisages calculating the 
performance of a trained algorithm. The process can be 
visualized by a training curve, which shows the decreasing 
error versus the number of training epochs. The criterion is the 
error level obtained on the training data set, while the 
derivative of the training curve based on the test set must 
remain negative. Unfortunately, this calculation gives an 
estimate of how the network architecture fits the training data 
set and is not a measure to provide an unambiguous statement 
of the subsequent performance of a trained network. 

IV. CONCLUSION 
A new method for automatic P onset picking for very high 

noise level signals has been presented. Selection criteria of 
methods were the following two conditions: the algorithm 
should give a stable result, and a minimal time for signal 
processing should be taken (time interval not in excess of four 
seconds). We used three methods in parallel. They are equally 
effective, but are mistaken on different examples. Our results 
confirm that the first earthquakes arrival can be identified for 
more than 97%.  

Our algorithm has been tested on synthetic signals 
contaminated with real noise of different time-frequency 
characteristics and amplitudes, providing good results for all 
the analyzed signals, independent of the kind of noise. Each 
particular test was followed by constructing a plot of the 
process marking the detected events where there were errors of 
the first (failure to detect an event) and second (false alarm) 
kinds, as well as recording the fact of event detection during a 
longer (5 seconds instead of 4) interval. These data were used 
to find the frequencies of the errors, which are estimates of the 
respective probabilities. The probability of the first kind errors 
is 0.02, the second kind is 0.06. 

If the interval during which an event is to be detected is 
increased to reach 5 seconds instead of the assigned 4, this 
improves the results very little, but significantly inflates the 
processing time. 

We have tested the methodology against standard 
STA/LTA phase picks and found that this approach performs 
better, especially for low signal-to-noise ratios. 

We already can speak about the possibility of the next step, 
i.e., development and production of devices for early warning 
of an earthquake. Both individuals and organizations can be 
final consumers. 
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