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 As is known, many problems of scientific-technical problems are reduced to the solution 
of integral equations with variable boundaries. The scientists are engaged in approximate 
solutions of such equations for a long time. One of the papers in this field belongs to V.Volterra. 
He is the initiator in investigation and application of integral equations with variable boundary. 
Therefore, in honour of Volterra, these equations are called Volterra equations. Mainly, 
different variations of the quadrature method are used in numerical solution of these equations. 
Here the hybrid type concrete onestep method is applied to numerical solution of Volterra 
integral equations. 

Introduction. Consider the following Volterra integral equation of second kind: 
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where the sufficiently smooth functions )(xf , ),,( ysxK  are given on the segment ],[ 0 Xx  and 
in the domain },{ 0 ayXxsxG ≤≤≤≤= , respectively, that are known. We assume that 
integral equation (1) has a unique continuous solution determined on the segment ],[ 0 Xx . 
Denote this solution by the function )(xy  and find its approximate values. For that we partition 
the segment ],[ 0 Xx  into N  equal parts by means of the constant step h<0  and determine the 
partitioning points in the form: mhxxm += 0  ),...,2,1,0( Nm = . Approximate values of the 
function )(xy  at the points ),...,2,1,0( Nmxm =  are denoted by my , the exact ones by )( mxy . 
 The classic method of solution to integral equations (1) is the quadrature method that in 
one variant may be written in the form (see, for example, [1], [2]): 
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where ),...,1,0(),( niaxff inn ==  are the coefficients of the quadrature formula. As it follows 
from (2), the number of inversions to calculations of the kernel ))(,,( sysxK  increases due to 
increase of the values of the quantity n . In order to preserve the amount of computational works 
in solving integral equations (1) at each step, we suggest a multistep method with constant 
coefficients, of the form: 
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where the coefficients ),...,2,1,0,(, )( kjij
ii =βα  are some real numbers, moreover 0≠kα , that 

are determined from the homogeneous system of linear algebraic equations.  
Usually, in the theory of numerical methods, onestep and multistep methods are 

investigated. Each of them has its advantage and lack. Taking into account what has been noted, 
the scientists suggested to construct the methods on the joint of these directions that could 
preserve the best properties of onestep and multistep methods and called them hybrid methods. 
Therefore, here we attempt to apply hybrid methods to the numerical solution of equation (1). 
 1. Construction of the hybrid method for solving Volterra integral equations. 
 Consider a special case when the function ))(,,( sysxK  is independent of the argument x  
and denote it by ),,(),( ysxKysF = . Then from equations (1) we can write: 

)()()),(,()()( 00 xfxysyxFxfxy =+′=′ .                                 (1.1) 
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There exists a great class of hybrid methods for solving problem (1.1). One of them is of 
the following form (see [5]): 

,4/)),(),3/(3( 13/111 ++++ ++++−+= nnnnnnnn yhxFyhxFhffyy                (1.2) 
This is an onestep method and has degree of accuracy 3=p . Formally, method (1.2) may 

be considered as a twostep one taking into account that three points ,3/, hxx nn +  hxn +  
participate in it. Since 3/hxn +  is not contained in the set of partitioning points, method (1.2) 
may be considered as an onestep method. However, method (1.2) may be replaced by the 
following one: 

,4/)),()9/),(29/)54(,3/(3( 1111 ++++ +++−+++= nnnnnnnnn yhxfyhxhfyyhxfhyy   (1.3) 
This method is an onestep method and has degree of accuracy 3=p . Here, on the base of 

method (1.2) we construct a method of type (3). For that, we show that it is possible to apply 
method (1.2) to finding the numerical solution of equation (1). To that end, we use some values 
of the solution of the function )(xy  determined as: 
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Consider the difference )()( 1 nn xyxy −+ , then we have: 

∫∫
+

++++ +−+−=−
1

0

.))(,,()))(,,())(,,(()()( 1111

n

n

n x

x
n

x

x
nnnnnn dssysxKdssysxKsysxKffxyxy  (1.4) 

Using the Lagrange theorem, we can write: 
)),(,,())(,,())(,,( 1 sysKhsysxKsysxK nxnn ξ′=−+  

where 1+<< nnn xx ξ . 
Consequently, we can write: 
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Considering the conditions imposed on the function ))(,,( sysxK , we get  
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Then we can write 
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If we take into account the ones obtained in (1.4), we can write 
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The integral replaced by a small quantity of first order with respect to h  may be replaced 
by a small quantity of higher order with respect to h  by adding an intermediate point while 
investigating the difference of the function )(xy , for example in the following way: 

)()(2)( 2/11 nnn xyxyxy +− ++ . 
Indeed, in this case we have: 
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It is known that  
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where 1+<< nnn xx η . 
Thus, we get that in estimating the first integral participating in (1.4), we apply (1.8) and 

repeat what has been written above, change the integral by second order quantity of the 
following form: 
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 Notice that while approximating the differential equation ),()( yxfxy =′ , at the point nx , 
its left hand side, i.e. the derivatives )( nxy′  may be replaced as: )( 2

1 hOyhyy nnn +′=−+ . A 
method for its solution may be constructed as follows: 
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By inspection ),...,2,1,0( kii =β , we can construct a method that approximates equation 
),()( yxfxy =′  with order p , where 2>p . Taking into account this circumstance and using 

the following change of the integral 
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from (1.6) we have  
.4/)),,(),,(3( 1113/13/1111 ++++++++ ++−=− nnnnnnnnnn yxxKyxxKhffyy              (1.9) 

 
The method that we’ll construct on the basis of the method (1.2) following by idea of 

construction the k-step method investigated in [5] for solving equation (1), we can write in the 
form: 
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For calculating 3/1+ny  we suggest the following scheme: 
.9/),,(29/)94(9/)54( 11113/113/1 +++++++ −+−++= nnnnnnnnn yxxhKfffyyy          (1.11) 

After taking into account (1.11) in (1.10) or in (1.9), we get an implicit method for use of 
which the predictor corrector method is suggested. In one variant, the predictor-corrector 
method has the following form: 

),,,(~
111 nnnnnnn yxxhKffyy +++ +−+=                                        (1.12) 

,2/))~,,(),,((ˆ 111111 ++++++ ++−+= nnnnnnnnnn yxxKyxxKhffyy                   (1.13) 
,9/)ˆ,,(29/)ˆ54(9/)94( 111113/13/1 +++++++ −+++−= nnnnnnnnn yxxhKyyfffy         (1.14) 

.4/))ˆ,,(),,(3( 1113/13/1111 ++++++++ ++−+= nnnnnnnnnn yxxKyxxKhffyy             (1.15) 
Here, method (1.12) is the Euler method, the relation (1.13) is the trapezoid method. Together, 
these methods may be called the Runge-Kutta method of second order. Method (1.14) was 
constructed for calculating the approximate values of quantities )3/( hxy n + , that may be 
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replaced by any other method and accuracy of method (1.15) should be taken into account. 
Notice that the methods participating in the predictor-corrector method are stable and therefore 
the convergence of method (1.12)-(1.15) gives rise to doubts (see [6]). 

Now construct an algorithm for using the represented predictor-corrector method, remark, 
that in the next algorithm we’ll suggest initial value )( 0xy  in the form: )( 00 xff = . 
To approximate the solution of the Volterra integral equation  
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x
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at N  equally spaces numbers in the interval ],[ 0 Xx : 
 
INPUT endpoints 0x , X ; initial value 0f ; functions )(xf  and ),,( zyxK ; positive integer N . 
OUTPUT approximation ny  to )( nxy  at the N  values of x . 
STEP 1 Set NxXh /)( 0−= ; 
     OUTPUT ( 0, yx ). 
STEP 2 For 1,...,2,1,0 −= Nn  do Steps 3-8 

STEP 3 Set nhxxn += 0  
STEP 4 Compute 1

~
+ny  by formula (1.12). 

STEP 5 Compute 1ˆ +ny  by formula (1.13). 
STEP 6 Compute 3/1+ny  by formula (1.14). 
STEP 7 Compute 1+ny  by formula (1.15). 
STEP 8 OUTPUT ( nn yyn ;ˆ; ). 

STEP 9 STOP. 
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