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 There are many work devoted to mathematical programming in infinite dimensional spaces 
[1, 3, 4, 5, 6, 7]. In most of them the proof of an existence of saddle point of Lagrange function 
is required existence of nonempty interior of the cone which defines partial order in the space. 
Then under some conditions (Slater, regularity, etc.) existence of saddle point of Lagrange 
function or Kuhn-Tucker conditions are established. Unfortunately, natural cones of many 
important spaces, such as ],0[ TLp  and )1( ∞<< pl p   have no interior points. 

 In this paper we prove an existence of saddle point of Lagrange function for convex 
programming problem in Banach spaces. 
 

Initial problem 

Let X and Y be reflexive Banach spaces partial ordered by convex closed cones K and P, 
respectively. A is a linear bounded operator, mapping X to Y, J(x) – a continuously 
differentiable convex functional. 
The problem is to minimize the functional   subject to constraints 

bAx ≤    )( PAxb ∈−  
              0≥x )( Kx∈  
  We will write this problem short, as  
                                               min)( →xJ (1) 

                                                    
0≥
≤

x
bAx
      (2) 

          Definition 1. If there exists ε0>0 such that for every }εbb{b 0≤−∈  the 

system bAx ≤ , 0≥x  has a solution, then we say that constraints (2) satisfy strong 
simultaneity condition.  

 

Existence of a saddle point 

    To prove existence of saddle point, we first prove the following lemmas.  
    Lemma1. If constraints (2) are strong simultaneous (i.e. satisfy strong simultaneity 
condition), then the set  

}0,:{ ≥≥−∈= xzAxbYzM  
have internal points. (Not that a point Mp∈  is called an internal point of M , if for each 

Yz∈  there exists a real number 0>ε , such that Mzp ∈+ λ  for ελ ≤ ). 
 
 Lemma 2. If constraints (2) are strong simultaneous, then the set  

}0,)(,:),{( ≥≤≥−×∈= xxJzAxbRYzS ρρ  
have internal points.  
    Let X* and Y* be the conjugate spaces of X and Y, respectively.  
    Conjugate cone of K is K* 

}eachfor0),(;{ **** KxxxXxK ∈≥∈=  
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and conjugate cone of P is defined as well.    Let X* and Y are partial ordered by K* and P*, 
respectively.  
Lemma 3.  If constraints (2) are strong simultaneous, then for any z*∈P*, z*≠0 there exists a 
point  xz* ≥ 0  such that  

0),( *
* >− zAxbz

 
    Definition 2. A pair *

00 , zx  is said to be saddle point of Lagrange function if 

0,0 *
00 ≥≥ zx  and  

),(),(),( *
0

*
00

*
0 zxLzxLzxL ≤≤  for each 0,0 *

0 ≥≥ zx .        (6) 
   It is easy to show that existence of a saddle point of Lagrange function follows existence of a 
solution of problem (1), (2). Converse of this is not so trivial. So prove the following theorem.  
 
Theorem 1. Suppose that constraints (2) are strong simultaneous, and the problem (1), (2) have 
a solution x0. Then there exists a non-zero linear functional, *

0z , such that the pair *
00 , zx  is a 

saddle point of Lagrange function.    
Note 1. It is easy to see that strong simultaneity condition of (2) is equivalent to following 
relation 

)(int0 PbAK ++∈  
Clearly  AK + b + P can have interior points even if P have no interior points. It means that 
strong simultaneity condition can take place also in cases when we cannot talk about Slater 
condition. 
Note 2. If int P ≠ ∅  Slater condition and strong simultaneity are equivalent. 
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