GREEDY ALGORITHMS ON SPECIAL CONVEX-ORDERED SETS

Ali Ramazanov

Baku State University, Baku, Azerbaijan rab-unibak@rambler.ru

In this paper we apply the theory of ordered convexity to convex integer programming. A general methodolologij is developed for worst-case analysis of greedy algorithms.

Let $Z^n = (Z^n, \leq)$ $(Z_+^n = (Z_+^n, \leq))$ be the set of all (nonnegative) integer n-vectors. If $0 = (0,...,0) \in P \subseteq Z_+^n$, P is finite, and the conditions $x \leq y$ and $x, y \in P$ imply the inclusion $[x, y] = \{z : x \leq z \leq y, z \in Z_+^n\} \subseteq P$ then the set P is called a finite ordered-convex set with zero [1]. In what follows, we assume that $P \subseteq Z_+^n$ is a finite ordered-convex set with zero.

A function $f: \mathbb{Z}_{+}^{n} \to \mathbb{R}$ (where \mathbb{R} denotes the set of real numbers) is said to be coordinate-convex [1, 2], if

$$\Delta_{ij}f(x) = \Delta_j f(x + e^i) - \Delta_j f(x) \le 0, \forall x \in Z_+^n, i, j \in \mathbb{N} = \{1, 2, ..., n\},\$$

where

$$\Delta_{j}f(x) = f(x+e^{j}) - f(x), e^{j} = (e_{1}^{j}, ..., e_{n}^{j}), e_{j}^{j} = 1, e_{j}^{k} = 0, j \neq k, j, k \in \mathbb{N}.$$

A usual, a function $f: \mathbb{Z}_{+}^{n} \to \mathbb{R}$ is no decreasing, if $\Delta_{i} f(x) \ge 0$ for any $x \in \mathbb{Z}_{+}^{n}$ and $i \in \mathbb{N}$.

Consider the discrete optimization problem (which we refer to as Problem A)

$$\max\{f(x): x = (x_1, ..., x_n) \in P_{\psi} \},\$$

where $f: Z_{+}^{n} \to R$ is a nondecreasing coordinate-convex function, $P_{\psi} = \{x \in P : \psi(x) = (Ax,x)/2 - b \le 0, P \subseteq Z_{+}^{n}$ - ordered- convexity set, $A = (a_{ij})_{n \times n} \in R^{n \times n}, a_{ij} \ge 0, a_{ij} = a_{ji}$ for $(i, j) \in N \times N, x \in Z_{+}^{n}, b \in R, b > 0$. By (Ax, x) we denote the inner product of the vectors Ax and x.

Theorem 1. If $\psi(x)$ is a nondecreasing function and $\psi(x) \in Z^1$, $\forall x \in Z_+^n$, then set P_{ψ} is order-convex.

Let x^* be an optimal solution Problem A, and let x^g be its gradient solution, i.e., the point obtained by applying the gradient coordinate ascent algorithm (see. e.g. [1-3]). By a guaranteed error estimate for the gradient algorithm in Problem A we mean a number $\varepsilon \ge 0$ for which

$$\frac{f(x^*) - f(x^g)}{f(x^*) - f(0)} \le \varepsilon$$

Denote by $\lambda = (\lambda_1, ..., \lambda_n)$ the characteristic vectors of matrix A, and $\lambda(A) = \max{\{\lambda_i : i \in N\}}$ - spectral radii of matrix A.

Theorem 2. If f(x) in Problem A is a nondecreasing function on the set $P \subseteq Z_+^n$, $0 < \lambda(A) \le 2/(2h+1)$, the gradient algorithm for solving Problem A has the guaranteed error estimate

$$\varepsilon = 1 - \frac{(2h+1)\lambda(A)}{2 + (2h+1)\lambda(A)},$$

where $h = \max\{x_1 + ... + x_n : x = (x_1, ..., x_n) \in P_{\psi} \}.$

Corollary. Let $\lambda(A) = 2/(2h+1)$. Then under the assumptions of theorem 2, the gradient algorithm for solving Problem A has the guaranteed error estimate

$$\varepsilon = \frac{1}{2}.$$

References

- 1. M.M. Kovalev (1987) Matroids in discrete Optimization (in Russian), Minsk.
- V.A. Emelichev, M.M. Kovalev, A.B. Ramazanov // Discrete Math. Appl. Vol. 2, No 2, pp. 119-131 (1992)
- 3. A.B. Ramazanov // Mathematical Notes, vol. 84, No. 1, pp. 147-151 (2008).