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In many statistical applications the data does not come from an independent stochastic process.
A standard assumption of weak dependence is given by the strong mixing condition:

Definition 1. Let (Xn )neN be a stationary process. Then the strong mixing coefficient is given
by
a(k)=sup{|P(AnB)-P(A)P(B): AcF",BeFy\,ne N}

where F&l1 isthe o —field generated by r. v.’s X,..., X., and (Xn)neN is called strongly

mixing, if a(k) —->0as k > w.

For further information on strong mixing and a detailed description of other mixing conditions
see Doukhan [4] and Bradley [2].
In many statistical applications, for example in the determination of confidence bands, one faces

the task to compute the distribution of astatistic T, =T, ( Xy,..., X, ). Thusiis usually rather

difficult, as the distribution F of Xi is unknown, so one often has to use approximation by the

normal distribution. Efron [5] proposed the bootstrap as an alternative. For i.i.d. data, the
validity of the bootstrap was established by Bickel and Freedman [1], and by Singh [11]. Using
Edgeworth expansion, one can often show that the bootstrap works better than normal

approximation, see Hall [6] for details. Computation of the distribution of T_ becomes even
more difficult when the observations are dependent, e.g., in the case of the sample mean

— l n

X =—Z Xi , one gets for weakly dependent data under some technical assumptions
Ni=1

Jn [)(n— Exlj —N(0,6%) in distribution, where

o? =Var [ X, ]+ 2> Cov[ X,, X1 ] .So one has not only the variance to estimate, but
i=L

also the autocovariances of the process. The naive bootstrap can fail under dependence, as Singh
[11] mentioned. Therefore, block bootstrappings method are commonly used for nonparametric
inference under dependence. There are different ways to resample blocks, for example the
circular block bootstrap or the moving block bootstrap (for a detailed description of the different
bootstrapping methods see Lahiri [7]. For the circular block bootstrap, Shao and Yu [10] have

shown that under strong mixing the distribution of the block bootstrap version X;of the

sample mean converges amost surely to the same distribution as the sample mean Xn.

Peligrad [8] has proved asymptotic normality of X; under another set of conditions, which

does not necessarily imply the central limit theorem for X n - Radulovic [9] has established weak
consistency under very weak conditions. We consider the nonoverlapping bootstrap, proposed
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by Carlstein [3], for the sample mean and for U-statistics. Let (Xn) be a sequence of

neN
rv.’s. Let Pe N be the block length such that P = p(n) = o(n), p—>© asnN— .
We introduce the following blocks of indicesand r.v.’s:

li :(X(i—l)p+1""’xip)’
B ={(i-1)p+L..ip}, i=1..k
Wherekzk(n)z{ﬂ

P

which is constructed by choosing randomly and independently blocks k times with
* * 1 .
P((Xl,...,xp): Ii):E =12,k

As abootstrap version of the sample mean we consider

} is the number of blocks. We consider a new sample XI feees X|:p,

e 1 ko
X
nkp pé

With P* E*, var* we denote the probability, expectation and variance conditionally on
(Xp),_y - Notethat

EXnkp_ ZX nkp

In what follows, we denote by X,, the sample mean of the observations Xj,..., X,,, by

n
N (0, 0'2) aGaussian r.v. with mean zero and variance o> and by l{} an indicator function.

Here we will give results for the sample mean only. First we will give theorems for general
stationary sequences which are analogues to the results of Peligrad [8], and Shao and Yu [10].

Theorem 1. Let {Xi N 21} be a stationary sequence of r.v'.s such that EX; =y and
Var X, < oo .Assume that the following conditions hold

1
) Var n2 ()(n— yj —02>0,
ir
@) nZ(Xn—y] SN (O,az) in distribution,
ir_
(3) pz(Xn,m—ﬂj—)O as.,

(4) if (i(xiu)JzE(z(xjy)T -0 as

kpia| | jeB j<B

206



The Third International Conference “ Problems of Cybernetics and Informatics’
September 6-8, 2010, Baku, Azerbaijan. Section #4 “ Applied Sochastic Analysis’
www.pci2010.science.az/4/21.pdf

— X, 1 5 0 as.
kp'Zi[Jé( IU)} {Zjesi(xj_”) >‘9kp} ”

for any & > 0. Then the following takes placeas N —> o0

Var’ (\/kip)z;’kp) — 0o’ as.
P’ (\/kip(i:]’kp - xn,kp) < x)— P(\/ﬁ()(n—y] < xj

Theorem 2. Let (Xn)neN be a stationary sequence of r.v.’s. with EX; =z,

sup —0 as

XeR

Var X; < co0. Assume that conditions (1), (2), (4) and for each fixed X € R

izk: 1 P[izp:(x _ )<XJ 50
kp i1 {ﬁzie&(xj_ﬂ)gx} \/Bizl i —H)S :

hold. Then the statement of Theorem 1 remains true.
Theorem 3. Let ( Xn )nEN be a stationary sequence of bounded almost surely r.v.'s with

EX, = . Assume that (3) and following conditions hold

p2
— >0 ash— o0,
n
1 2

(5) —Var§, - o as N— o,
n

—Z[Z(X ,LI)J — 0o’ as as N—>o.

K Piz jeB
Then amost surely as N — oo
(6) Var’ (\/k_p)?;,kp) -0,
(7 ko (X3 = X)) > N(0.0°)

We formulate theorems under assumptions on the strong mixing coefficients which are
analogues to the results of Peligrad [8] and Shao, Yu [10].

Theorem 4. Let (Xn)neN be a stationary sequence of strong mixing r.v.’swith
1
246 \ 215
EX, =y and (E‘Xl‘ ’ )2+5 < oo forsome 0< O <o0. Assume

a(n)SCn‘l forsome C >0, r > 2;5,

p(n)<Cn® for some 0< & <1 and
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®) p(n)= p(z') for 2 <n<2™ 1=12,..

Then o = EX{ + 23 7",Cov( X, X;) <00 and in the case o > 0 the statement
of Theorem 1 holds.

Theorem 5. Let (Xn)neN be a stationary sequence of almost surely bounded strongly
mixing r.v.’s. Assumethat (5), (8) and the following conditions hold

2 P*(n)a(p(n)

> < 00,
n=1 n

o 3

Z P (zn) <0

n=1 N

Then (6), (7) hold.
We have established consistency of the bootstrap version of U-statistics of mixing
observations, but results will be given in another paper.
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