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0. In the theory of stochastic Ito’ s integral I f (t, w)dw, , besides the fact that the integr-
0

and f(t,w) isthe measurable function of two variables, it should be the adapted (nonanticipat-
ed) process. Starting from the 70™ of the past century, many attempts were made to weak the re-
quirement for the integrand to be adapted for the integrand of the Ito’s stochastic integral aswell
asin the theory of “the extension of filtration”. Skorokhod (1975) suggested absolutely different
method, it generalized the direct and inverse 1t0’ s integrals and did not require for the integrand
to be independent of the future Wiener process. Towards this end, he required for the integrand
to be smooth in a certain sense, i.e, its stochastic differentiability. This idea was later on
developed in the works of Gaveau-Trauber (1982), Nualart, Zakai (1986), Pardoux (1982),
Protter, Malliavin (1979), etc. In particular, Gaveau-Trauber have proved that the Skorokhod
operator of stochastic integration coincides with the conjugate operator of a stochastic derivative
operator.

For the class of normal martingales (a martingale M is called normal if (M, M), =t)
which have the chaos representation property Ma, Protter and Martin (1998) have proposed an
anticipating integral and the stochastic derivative operator and the integral representation
formula of Ocone-Haussmann-Clark is established (which, in turn play an important role in the
modern financial mathematics). Thisintegral is analogous to the Skorohod integral as developed
by Nualart and Pardoux (1988). According to the Ocone-Haussmann-Clark formula if

Fe Dz'\f'l,then
]
F =E(F)+[ °(D!"F)dMm,
0

is valid; here D;‘f'l denotes the space of quadratically integrable functionals having the first
order stochastic derivative, and p(DtM F) is the predictable projection of the stochastic

derivative D F of the functiona F . There are many similarities between the above-
mentioned martingale anticipating integral and the Skorohod integral, but there are also some
important differences. Many of these differences stem from one key fact: in the Wiener case
[w,w], =(w,w), =t, whilein the normal martingale case only (M,M), =t, and [M,M], is
random. For example, there are two ways to describe the variational derivative and they are

equivalent in the Wiener case but not in the martingale case. In [3] an example is given, which
shows that the two definitions (Sobolev space and chaos expansion) are compatible if and only

if [M,M], is deterministic. Therefore in the martingale case the space D), (1< p<2)

cannot be defined in the usual way, i.e., by closing the class of smooth functionals with respect
to the corresponding norm. In work of Purtukhia (2003) the space D " (1< p< 2)isproposed

for a class of norma martingales and the integral representation formula of Ocone-Haussmann-
Clark is established for functionals from this space.
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1. Let W,te[0,1] bea d-dimensional standard Wiener process defined on the canon-
ical probability space (Q2,3,P), 3, =of{w,,0<s<t}. A smooth functional will be a
random variable F:Q — R of the form F = f(w,,W,_,....w ), where the function f
belongsto C°(R™) and t,,t,,...,t. €[0,1]. The derivative of F can be defined as (see [2]):

(DF)’ :ZT oW W ) g, (1), t€[0,1], j=1,....d.
Let F be a sguare integrable random variable having an orthogona Wiener-Chaos

expansion of the form F = Z I,(f,) - Then F belongsto the space D’ (see[2]) if and only

n=0

it > nn!|| f, ||i2([0'1]n) <o andinthiscasewe have D'F =Y nl,,(f,(-1)), te[0,1] and

n=1 n=1

S 2
”” D"F ||L2([0,1])”L2(Q): Z;; nn! ” fn ”Lz([0,1]”) .
n=.

2. Let X beanincreasing smplex of R': £ ={(t,...,t,)e R :0<t <---<t}, and
extend afunction f defined on X, by making f symmetricon R". One can then define the

multiple integral with respectto M as
L (F):=nt[ f(t,...t,)dM, -dM, .

z

n

Definition 2.1 (cf. Definition 3.2 [3]). Let R = o{M,;t >0} bethe o -algebra genera-
ted by anormal martingale M . Let H, be the n-th homogeneous chaos, H, =1, (f), where

f rangesoveral L,(Z,).If L,(R,P)= (Jf)()Hn, then we say M possesses the chaos represe-
ntation property (CRP).
Let (€2, 3,{3,},.,, P) beafiltered probability space satisfying the usual conditions. We

assume that a normal martingale M with the CRP is given on it and that 3 is generated by
M . Thus, for any random variable F € L, (R, P) we have by the CRP that there exists a sequ-

ence of functions f eL2([0,]") (={heL,([0,]"): h is symmetric in al variables),
n=12,..,suchthat F=>"1 (f). Consider thefollowing subset D;} = L,(R,P):

n=0
o8 ~(F = S (1) S0 oy <

Definition 2.2 (see [3]). The derivative operator is defined as a linear operator D"
from D, into L*([0, T]xQ) by therelation:

DMF =Y N, (f,(1), te[0],

whenever F has the chaos expansion F = z ().
n=0
3. Our aim is to introduce a new definition of the stochastic derivative operator for the
two-dimensional compensated Poisson functionals, which is not based on the chaos expansion
of functionals, as well asin Ma, Protter and Martin’s work and to show the equivalence of this
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two definitions. Let (Q,3,{3}, 01, P) be afiltered probability space satisfying the usual
conditions. Let N, be the standard Poisson process (P(N, = k) =t‘e*/k!,k=0,12,...) and
3, is generated by N (3, :StN),S:ST. Let M, be the compensated Poisson process
(M, =N,—-t). Let us denoteV, f(x):=f(x+)-f(x); V,f(M;)=V (X
any  function of two  variables a(,?) introduce  the  designation:
VZg(x,y) = g(x+1y+1)-g(x.y).

Itisnot difficult to seethat V [V, g(x,¥)]=V [V,9(x y)] and

VZg(x,y) =V, [V, 9(x, )]+ V,9(x, ¥)+V,9(x, ).
Using the relations

For

X=My *

f
M, = [1o5WAM, =1, (154 ()) and [M,M];=N,=M_+s,
0
by the Definition 2.2 we can obtain: DM = D" [1,(1;4 ()] = I 5.4(t) and
DM'[M,M],=D/"N,=D"M,+D"s=1,4(t).
Definition 3. Dt (My)" :=[V,, ()] [y, Dt My =[V, ()] ey, |05

BIM P(Ms,M;) =V V .P(Mg,M:)l5qO1 1)+
+V,PMg, M)l ) +V ,P(Mg, M)l or (1),
for any polynomial function P(X,Y) .
Proposition 3.1. If F =1,(f,) forsome f, € L3([0,T]?), then F have the stochas-

tic derivative, D: F = 21,(f,(,t)) = D"F and
—M
| Dt F ”iz([O,T]xQ): 2-2-| fz ”2

L(oTI?)
Proof. Step 1:Supposethat f, isasymmetric function of the form

fot 1) =al .. () +al o 0 (4,1,), where A, A, c[0,T], ANA, =D, Thesetof

such symmetric function we denoteby E, . For such f, we have

1,(f,) = a} |, (S)dM ] 1, (9dM + aT[ 1, ()M } |, (dM = 2aM (A)M (A,)
Therefore, doue to the Def?nition 3.1, one c;n easily verifoy that:
Di'1,(f,) = 2aD: [M(A)M(A)] = 2a[1 , ()1, () + 1, OM(A,)+1, OM(A)] =
=231 , (OM(A) + 1, OM(A)] =21, (f,(.1)). (31)

Moreover, it is not difficult to see that:

T T
—M
ID: F ”iz([O,T]xQ): _[” 2|1(f2(-,t)) ”iz(g) dt = IZZ | |1(f2('at)) ”iz([O,T]) dt =

:
=22 {1, GO I gory =22 F, I - (32)
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Step 2: If F =1,(f,) forsome f, e L2([0,T]?), then F can be approximated in the
L, (€2) -norm by a sequence of multipleintegrals |,(f,") of elements f,' €eE, asn— .
By therelations (3.1) and (3.2) applied to f,’ we deduce that the sequence of

derivativesD™ f." convergein L, ([0, T]x Q) , which completes the proof of the proposition.

Analogously one can prove the following
Theorem 3.1. For two-dimensional Poisson polynomial functionals the above-given

two definitions of stochastic derivatives (Definition 3. 2 from [3] and Definition 3.1) are
equivalent:

Dt P(Mg,M,)=D"P(M¢,M,).

Proposition 3.2. D,P(Mg,M) =[P(Mg+LM; +1)-P(M¢,M; + D]l (t) +
+[P(Mg,M; +1) -P(M,M )l (or;() =V, P(Mg,M; +)DM¢ +V P(Mg,M;)D M.
Proposition 3.3. For any polynomia functions F (X, y) and G(X,y) we have
Dt[F(MS’MT)G(MS’MT)]:G(MS’MT)DtF(MS’MT)+
+F(Mg,M;)D,G(Mg,M;)+D,F(Mg,M;)D,G(Mg,M;).

Proof. Due to the definition 3.1 on the one hand we have
Dt[F(MS'MT)G(MS'MT)]=[F(MS+1'MT +:I-)G‘(Ms+:I-'M'r +1 -
-F(Mg,M; +)G(Mg, M + D]l o ) +[F(Mg,M; +)YG(M ¢, M +1) -
_F(MS’MT)G(MS’MT)]I[O,T](t)::|1+|2'

On other hand, one can conclude that
G(Ms,M;)DF(Mg, M) +F(Mg,M;)D,G(Mg, M) +
+D,F(M4,M;)D,G(M ,M;)=1,+1,.

Theorem 3.2. Let U, is Skorokhod integrable and F (X, Y) is apolynomial function.
Then F(Mg, M;)u, is Skorokhod integrable and we have
[F(Ms,M;)udM, = F(Mg,M;) [udM, -
[0.T] [0.T]
- J.utDt[F(MS'MT)]th_ J.utDt[F(MS’MT)]dt (P-as.).
[0,T] [0T]
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