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A problem of the identification of the coefficients of an object’s mathematical model is 
investigated in the work. The coefficients depend on the phase state of the object described by a 
system of non-linear ordinary differential equations. 

To solve the problem numerically, we propose to separate the entire set of possible phase 
states of the object into finite number of sub-sets. In each of these sub-sets the identifiable coef-
ficients are sought on any parametrically given class of functions of phase. This class of func-
tions is defined with the use of basis functions. In this case the initial problem is reduced to the 
identification of constant parameters participating in the representations of the coefficients.  

Necessary optimality conditions of the values of the parameters defining the unknown 
coefficients are given in the work. The obtained formulas for the gradient of the functional al-
low to use iterative first order optimization methods for obtaining the values of the parameters. 

Let the investigated dynamical object be generally described by a non-linear system of 
differential equations of the nth order: 
 ( )( ) ( ]TttxKtxftx ,0,)(),()( ∈=& , (1) 

where ( ) nRtx ∈  is a phase state vector; ( ) rRtxK ∈)(  is identifiable nearly everywhere continu-
ously-differentiable vector-function designating the coefficients of the mathematical model; the 
known vector-function .,.)(f  is continuously-differentiable on all its arguments. 

Suppose that in the aim of identifying the coefficients of the mathematical model of proc-
ess (1), N  independent observations have been carried out over the dynamics of the process at 
different initial conditions: 
 ( ) Nixx ii ,...,2,1,0 0 == . (2) 

The results of observations may also be some components or the whole state vector at dif-
ferent moments of time 
 ( ) ( ] NiMjTtxxtx iij

iji
ij ,...,2,1,,...,2,1,,0,; 0 ==∈= , (3) 

particularly, at the final moment of time T  
 ( ) NixxTx i

T
i ,...,2,1,; 0 == , (4) 

where iM  is the number of moments of time at which observations have been carried out over 

the state of the object with initial condition ix0  at i th experiment. There may also be observa-
tions over the state of the object at different initial conditions at some time intervals: 
 ( ) [ ] [ ] NiMjTttyxtx iijijijij

iji ,...,2,1,,...,2,1,,,0,),(; 110 ==<⊂∈= −− ττττ , (5) 

where iM  is the number of time intervals at initial condition ix0 , at which observations have 
been carried out over the object. Observations may also be of mixed type, i.e. both pointwise (3) 
or (4) and interval (5). 

The considered problem consists in determining (identifying) the unknown coefficients 
( )xK  of system (1) in the presence of the results of observations (2), (3), (4) or (5). 

The quality of identification is estimated with the use of a mean-square performance cri-
terion, at that for each type of observations (3)-(5) the specific form of the criterion is different. 
For the sake of concreteness we assume that final observations (4) have been carried out. Then 
the performance criterion is as follows: 
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 ( )( ) ( )( )( ) ( ) ( )
( )xKrL

N

i

ii xKxKxKxTxI
N

xKJ minˆ,;1 2

21
0 →−⋅+∑⋅=

=
ε , (6) 

 ( )( )( ) ( )( ) 2
00 ,;,; nR

i
T

iii xxKxTxxKxTxI −= , (7) 

where ( ) ( )( )xKxtxtx ,; 0=  is the solution to problem (1) in the presence of some initial condition 

0x  and coefficients defined by the vector-function ( ) rRxK ∈ ; 0>ε , ( )xK̂  are regularization 
parameters. 

In order to restore the unknown coefficients of the system of differential equations (1), we 
propose the following approach. The entire set of possible phase states is separated into finite 
number of sub-sets. In each of these sub-sets the coefficients are sought on a parametrically 
given class of functions of state defined with the use of basis functions 

Denote by nRX ⊆  a set of all possible phase states of the object ( )tx  in the presence of 
all admissible values of the initial conditions and the values of the coefficients ( )xK . Let X  be 

covered by the given finite number L  of simply connected sub-sets (zones) XX k ⊂  so that  

 U
L

XX
1=

⊆
ν

ν , I jiLjiXX ji ≠=∅= ,,...,2,1,,intint . (8) 

The zones of phase space 

 
( ) ( ){ }

( ){ } ( ){ },0:,0:

,1,...,3,2,0,0:
111

1

>∈=Χ≤∈=Χ

−=≤>∈=Χ
−

−

xgRxxgRx

LxgxgRx
LnLn

n νννν

 (9) 

are defined by their boundaries with the use of the given continuously-differentiable functions 
( ) ( ) ( ) ( )( )xgxgxgxg L 121 ,...,, −= . 

We suppose that the vector-functions ( ).,.f  and ( ).g  satisfy the following conditions: 
 ( ) 1, mKxf ≤ ,  ( ) 2, mKxfx ≤∇ ,  ( ) 3, mKxfK ≤∇ ,  

 ( ) 4mxg ≤ν ,  ( ) 5mxg ≤∇ ν . (10) 

when [ ]Tt ,0∈  and 1,...,2,1, −=∈ LXx ν , where 5,...,2,1, =imi , are given positive numbers. 
The identifiable coefficients ( ) ( ) ( )( )xkxkxK r,...,1=  in each of the 

zones LX ,...,2,1, =νν , are defined as follows: 

 ( ) ( ) ( ) ( ) rsxpxkRxKxK
m

i
isis

r ,...,2,1,,
1

=∑ ⋅=∈=
=

ϕννν , (11) 

 constpsi =
ν , [ ]TtLXxmirs ,0,,...,2,1,,,...,2,1,,...,2,1 ∈=∈== νν ,  

where ( )xiϕ , mi ,...,2,1= , are given linearly-independent basis functions; ν
sip  are as yet un-

known constant parameters designating the identifiable functions. As a rule, the coefficients 
( )xK  in real problems must satisfy some constraints arising from technical or technological 

considerations. Then the parameters ( )Lpppp ,...,, 21= , ( )νννν
rmm pppp ,...,,..., 111= , 

L,...,2,1=ν , must also satisfy the definite corresponding constraints. Denote by 

LRP mr ,...,2,1, =⊂ × νν  the sets of admissible values of the zonal parameters νp . These sets 

are supposed to be closed and bounded. LPPPP ×××= ...21 . 
In this case the solution to differential equations system (1), defining the current state of the 

process ( )tx , will depend on the initial condition 0x  and on zonal values of the vector of pa-
rameters p , i.e. ( ) ( )pxtxtx ,; 0= .  

Taking into account representation (11) the identification criterion will be as follows: 
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( ) ( )( )

( )( ) ( ) ,,;,;

,minˆ,;1

2
00

2

1
0

nR
i
T

iii

Pp
mrLR

N

i

ii

xpxTxpxTxI

pppxTxI
N

pJ

−=

→−⋅+∑⋅=
∈

××
=

ε
 (12) 

where ( ) ( )pxtxtx ,; 0=  is the solution to Cauchy problem (1) in the presence of the given admis-
sible vector of parameters p  and initial condition 0x  taking into account (11); p̂ is a regulariza-
tion parameter corresponding to the function ( )xK̂  from (6). 

Problem (1), (2), (4), (12) can be related to a parametrical optimal control problem. At the 
same time this problem, owing to the fact that the finite-dimensional vector of parameters p  is 
optimized, can be related to finite-dimensional optimization problems. In order to solve these 
problems, we can make use of efficient numerical methods, particularly, of first order and the 
finished standard software packages [2, 3]. Thereto, we need to obtain formulas for the compo-
nents of the gradient of target functional (12) with respect to the components of the vector p  – 

( )pJp∇ . These formulas will also allow us to formulate necessary first order optimality condi-
tions with respect to the vector of parameters p . 

Let p  be an admissible value of the parameter. Suppose that the input data and functions 
participating in the statement of the considered problem are such that for arbitrary admissible 
values of the vector p  the trajectory of the system when hitting the boundary surface never 
slides over it, i.e. there always holds true the condition  

 ( )( ) ( ) ( )( )( ) 1,...,2,1,0,,* −=>≥ LxKtxftxgx νδν
νν

ν . (13) 

Here «*» is transposition sign; [ ]Tt ,0∈ν  are moments of time when the trajectory hits the 
boundary surface; at that the point and moment of intersection is stable to small perturbations of 
the parameters of the problem. This condition is not of principal value, but the case when it does 
not hold true necessitates carrying on additional computations for the sections of the trajectory 
which are on the boundary surface. 

The following remark is of important value. It is evident that the experiments and the re-
sults of observations (4) are independent of each other. The same is true for the items of the 
functional (12). This means that the following formula takes place for the gradient of the func-
tional: 

 ( ) ( )( ) ( )pppxTxI
N

pJ
N

i

ii
pp ˆ2,;1

1
0 −⋅⋅+∑∇⋅=∇

=
ε .  

That is why in order to obtain formulas for ( )pJ∇  we need to obtain formulas for the gradient 

with respect to individual items ( )( ) NipxTxI ii
p ,...,2,1,,; 0 =∇ . To this end we use the formula of 

the increment of target functional (12) that is obtained at the expense of the increment of the 
values of the parameters p . 

In the general case for arbitrary number of zones of the phase space, i.e. at 2>L  we ob-
tain the following formulas for the components of the gradient of the target functional  

 

( ) ( )( ) ( )

( )( ) ( ) ( )( ) ,,,;,;,;

,ˆ2,;

;0

0
0

*
0

1
0

∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂
⋅

∂
∂
⋅=

−⋅⋅+∑=

⎟
⎠
⎞⎜

⎝
⎛Π

=

pixl
l
kj

l

l

li
iii

l
kj

l
kj

l
kj

N

i

ii
l
kj

l
kj

dt
p
K

K
KpxtxfpxtpxTxI

dp
d

pppxTxI
dp

dpJ
dp

d

ψ

ε

 (15) 

 ( ) Llmjrkx
p
K

jl
kj

l
,...,2,1,,...,2,1,,...,2,1, ====

∂
∂ ϕ ,  
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where ( ) NiLlpxi
l ,...,2,1,,...,2,1,;0 ==Π , is the time interval during which the trajectory with 

initial condition ix0  and the value of the parameter p  was in zone lX ; ( )pxt i ,; 0ψ  is the solution 
to the following conjugate system 

 ( ) ( ) ( )( ) ( )pxt
dx

Ktxdfpxtpxt i
l

ii ;,,,;,; 00
*

0
* Π∈⋅−=

ν
ψψ& , (16) 

 ( ) ( )( )
x

pxTxIT
∂

∂
=

,; 0ψ . (17) 

satisfying the following jump condition at the moment of time when the trajectory of system (1) 
hits the boundary surface: 

              ( ) ( ) ( )( ) ( ) ( )( ) ( )( )[ ]
( )( ) ( )( )ν

ν
ν

ν
ν

ν
ννν

νν
ψγγψψ

Ktxf
x

txg
KtxfKtxft

x
txgtt

,

,,0,00 *

1*

⋅
∂

∂
−⋅+

=⋅
∂

∂
−+=−

+
, (18) 

 1,...,2,1 −= Lν .  
Remark. If in the presence of some admissible values of the vector p  the trajectory of the sys-
tem stays in one of the zones at [ ]Tt ,0∈ , then the gradient of the functional and conjugate sys-
tem will be defined by the known formulas for systems without switchings [5, 6], i.e. the 
integration in formula (15) will be carried out on the interval [ ]T,0 , and ( )tψ  will satisfy conju-
gate system (16), (17) everywhere on [ ]T,0  without jump condition (18). 

The following theorem holds true. 
Theorem (necessary optimality condition). For the optimality of the vector p~  in prob-

lem (1), (2), (4), (8)-(12), it is necessary that the following relation be satisfied 

 ( ) ( )( ) ( ) 0~,;~)(
1

0 ≥−∑ ⋅∇=−⋅∇
=

pppxTxIpppJ
N

i

ii
pp , ( )α,~pUp∈∀ ,  

where )( pJp∇  is defined by formula (15); ( )α,~pU  is α -neighborhood of the point p~ . 
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