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1. A Simple Stochastic Model of Hail  Clouds Emerging. Under a simple stochastic 

model of hail clouds emerging over a circular domain C with the center O=(0,0) and radius R 
which identifies a cloud with its plane projection rectangle ωΔ  of fixed sizes 2 2l h× , 1h < , 
centered at ω  and is based on the uniformity of the location of ω  in the outer parallel set of the 
basic rectangle 0Δ , the Minkowski sum 0 CΔ ⊕  [1,2,3], and the isotropy of rectangle 
orientation on the one hand and identity of probabilities and stochastic independence of 
covering of O by random rectangles ωΔ  on the other hand, and using the normal approximation 
for the binomial probability distribution of the random number of such coverings the confidence 
interval is constructed which gives the bounds for the unknown number n of hail clouds over the 
domain by the number ξ  of hail clouds observed over the center. 

Encouraged by  the advanced studies in stochastic modeling completed by R. Chitashvili 
and E. Khmaladze at I.Vekua Institute of Applied Mathematics, the third author who was 
involved  into stochastic modeling of hail clouds emerging by G. Sulakvelidze performed the 
above mentioned research at the same institute in early 1970ies. The paper with  a description of 
that research [4] available online is  out of print only recently.We decided to present its  
shortened  version to the international audience at PCI2010 in Baku, Azerbaijan. 

Under our assumption that each of n clouds observable  at random and independently 
from others covers the point O with the same probability p the random variable ξ  has a 
binomial distribution with the parameters n and p .Maximum likelihood estimator n̂  for n under 
the observed value ξ  when p is known, equals to 

ˆ ,n
p
ξ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

       (1) 

where [x] is the integral part of a real number x. 
Assume that an unknown n is large enough. Due to the De Moivre–Laplace theorem we 

obtan, that np npq tαξ − < with  probability α , where 1q p= −  ,
21/ 2 / 2

0

( ) (2 )
t

ut e duπ − −Φ = ∫  

and tα is chosen such that ( ) / 2tα αΦ = .Solving this inequality with respect to n, we have the 
following asymptotic confidence interval for n 

( ( , , ), ( , , ))p a p p b pξ ξ α ξ ξ α− +  
with the confidence probability α , i.e., 

( ( , , ) ( , , )) ,P p a p n p b pξ ξ α ξ ξ α α− < < + ≈      (2) 
where 

2 2 2 2( 4 )
( , , ) , ( , , ) ( , , ) .

2
t q t q t q ta p b p a p

p p
α α α αξ

ξ α ξ α ξ α
+ −

= = +    (3) 

Now we assign a meaningful value to the probability p using the notion of geometric 
probability. Assume that the cloud is observable from the circle C if the above-mentioned 
rectangle intersects with the circle. Under registration of the cloud over the point O let us mean 
the hitting of the point O into the rectangle. Thus we have to calculate the probability that the 
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rectangle 2 2l h×  ( )l h> , randomly chosen from those rectangles which intersect with the circle 
C of radius R, will cover the center of the circle. 

The position of the rectangle on the plane is characterized by that of its center and angle 
between the fixed line, passing through the point O, and the rectangle basis. By the symmetry, 
we can fix this angle . 

For any 2( , )u s t R= ∈  denote [ , ] [ , ]u s l s l t h t hΔ = − + × − +  the rectangle of fixed sizes 
with the center at u, 0Δ  being the basic rectangle [ , ] [ , ]l l h h− × − . Evidently, 0 uu + Δ = Δ  and 
the inclusions vu∈Δ  and uv∈Δ  are equivalent for any two 2,u v R∈ . 

 Let us now construct the set Ω  of positions of the rectangle center ( , )x yω =  when the 
rectangle ωΔ  intersects with the circle C of radius R. Place the origin of the Cartesian 
coordinate system at O and assume that the Ox-axis is a straight line for the angle counting out. 
For the sake of simplicity, we assume that the angle between the rectangle basis and the Ox-axis 
is equal to zero. 

From the definition of the  Minkowski sum { | , }A B a b a A b B⊕ = + ∈ ∈  of two sets A 
and B in Euclidean space (see, e.g., [1], [2], [3]) it is easy to derive the representation 

0CΩ = ⊕Δ  
for the set 

{ }| CωωΩ = Δ ∩ ≠∅  
as  Minkowski sum of the basic rectangle 0Δ  and the given circle C called an outer parallel set 
of 0Δ  [2] ( for the proof see [4]). 

 
If instead of 0Δ  a general convex set K is meant and RK  denotes its outer parallel set on 

the distance R, then according to [2, Ch. I] we have the following formulas for the perimeter RL  
and area (Lebesgue measure) of RK : 

22 , ,R RL L R F F LR Rπ π= + = + +      (4) 
where L is the perimeter of K and F is its area.. 

Thus if we assume that all the positions of ω  are uniformly distributed on Ω  for the 
probability that a random rectangle ωΔ  covers the point O we obtain from (4) 

, 2
4 .

4 4( )l h
R

F lhp
F lh l h R Rπ

= =
+ + +

     (5) 

(The notation ,l hp  emphasizes that the probability is calculated for rectangles of fixed sizes.) If 
extra randomness is introduced assuming that l and h are random variables with a known joint 
distribution, then the unknown probability would be equal to mathematical expectation 

,( )l hp E p= . 
Note that if we can indicate a priori the numbers 0l , l , 0h , h  such that 

0 0 0 0, , , ,l h R R< < < < � �l l h h l h      (6) 
then 

2
( )4 .E lhp
Rπ

≈        (7) 

But if l and h are not correlated, then  

2
( ) ( )4 .E l E hp

Rπ
≈       (8) 

 
The expectations E(lh), E(l), E(h) may be unknown but  on the basis of suitable sampling 

data they can be approximated reliably by the empirical means lh , l  and h . 
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Thus with a high reliability 

24 lhp
Rπ

≈        (7′) 

and in the case of uncorrelated l and h, when 

24 l hp
Rπ

≈        (8′) 

(8') can be obtained by the choice from the very beginning of a rectangle of sizes 2 2l h⊗  by 
passing from 

24
4 4( )

l hp
l h l h R Rπ

≈
+ + +

     (5′) 

to (8') under the condition (6). 
The set of formulas (1)–(3), (5), (5') and (8') allow us to estimate the unknown number n. 
Remark 1. According to our best knowledge no proper application of the proposed 

technique was done.   A problem to collect data to test model quality by comparison the values 
of areas damaged by hail and its model values posed by G. Sulakvelidze  and for which later 
much efforts by J. Mdinaradze were spent without any success, is still open for collaboration. 

Remark 2. Note that if in a role of basic set 0Δ  one takes the circle of radius l or ellipse 
with half-axes l and h  ( )h l<  one obtains some meaningful extensions of our model which may 
have an interest for, say, biological, ecological and even meteorological modelling. For  circle 

our ratio equals to
2

.l
R

F lp
F R l

⎛ ⎞= = ⎜ ⎟+⎝ ⎠
For ellipse we have , 2 ,

4 ( )l h
R

F lhp
F lh lE e R R

π
π π

= =
+ +

 

where E(e) stands for the complete elliptic integral of the second kind and 
2 2l he

l
−

=  for the 

eccentricity of ellipse. 
 
2. A simple stochastic trade model and related quantile optimality. Let  now a 

random variable ξ  having a distribution function ( )F u , 0u ≥ , which is absolutely continuous 
with the density function ( )f u , 0u ≥  w.r.t. Lebesgue measure describe the random demand in 
kg of certain continuously varied goods. If a businessman offers to certain market a quantity x 
of these goods which is less or equal to random demand ξ  then he gains USD A per kg, i.e. 
USD Ax in whole, if vice versa, he gains USD Aξ  and loses USD ( )B x ξ− . If ( , )G x ξ  stands 
for gain function and ( )I xξ >  and ( )I xξ ≤  denote indicators of corresponding events, we have  

[ ]( , ) ( ) ( ) ( )G x I x Ax I x A B xξ ξ ξ ξ ξ= > + ≤ − −  
and under the notation ( 0)Iη η η+ = ≥  for the nonnegative part of a random variable η  we 
obtain, that 

( , ) ( )( ) .G x Ax A B xξ ξ += − + −  
Introducing notation for the expectation ( ) ( , )M x EG x ξ=  we have 

( ) ( ) ( )M x Ax A B E x ξ += − + −  
and performing simple calculations 

0
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
x x x x

xE x x u dF u xF x udF u xF x uF u F u du F u duξ +− = − = − = − + =∫ ∫ ∫ ∫  

we obtain 

0

( ) ( ) ( ) .
x

M x Ax A B F u du= − + ∫  
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Now let us find * arg max ( ) .
x

x M x= Taking derivative of ( )M x , we obtain 

'( ) ( ) ( ) 0,M x A A B F x= − + =  
that is 

1 .Ax F
A B

− ⎛ ⎞= ⎜ ⎟+⎝ ⎠
 

Further, for  a.e.  supp( )x F∈  we have ''( ) ( ) '( ) 0M x A B F x= − + > ,and 

                                                 * 1arg max ( )
x

Ax M x F
A B

− ⎛ ⎞= = ⎜ ⎟+⎝ ⎠
.                                                 

As for variance 

( )22 2 2( ) ( , ) ( ) ( ) ( ) ( ) ( ) ,D x DG x A B D x A B E x E xξ ξ ξ ξ+ + +
⎡ ⎤= = + − = + − − −⎣ ⎦  

we have 
 

2

2 2

0 0 0

( ) ( ) 2 ( ) ( ) ( ) , '( ) ( ) 2(1 ( )) ( )
x x x

D x A B x u F u du F u du D x A B F x F u du
⎡ ⎤⎛ ⎞
⎢ ⎥= + − − = + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫  

and 

2

0

''( ) 2( ) ( )(1 ( )) ( ) ( ) .
x

D x A B F x F x f x F u du
⎡ ⎤

= + − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

This leads to 

2

0 0

( ) 2( ) (1 ( )) ( )
x t

D x A B F x F u du dt
⎡ ⎤

= + −⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫  

and special properties of 0x = and finite 1(1)x b F −= =  of having least and greatest variances. 
 
 For the known ( )A A B+ -quantile, we have a solution of the  initial optimality problem 

and when it is unknown we obtain the following   interesting statistical problem 
 
How to choose 1 2, , , mx x xK  such that by mn  independent observations 

1, , 1, ,i in i mξ ξ =K K   to construct a good procedure based on the vector  
( )1( , ) ( , ) , 1, ,i i i inG x G x n i mξ ξ+ + =L K  

to estimate 
( )1

0
arg max ( ) ( ) ?

x
M x F A A B−

>
= +  
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