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The differential equations with random coefficients are relatively less studied because the 

object considered is difficult enough. The last period achievements in the stochastic integration 
theory (see for example [1], [2]) gives possibility to consider some questions of  solvability of 
this problem. Also it may be to represent the solution for the wide enough class of boundary 
problems with random coefficients. This paper is devoted to one of such kind problem. 
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Preliminarily we give some formal computations, which show the basic idea of this work. 

In the class of generalized functions consider stochastic differential equation 
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We’ll show, that solution of the equation (1) one can to represent in form 
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where the integral in (2) is interpreted as extended stochastic integral.  
Really, by formula of differentiation of the stochastic integral we can write 
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which is equivalent to (1). 
The formula obtained we can to use in various interesting situations. For instance 

consider second boundary problem for ordinary differential equation with random coefficients:  
               twttytty ′=++′′ )()()()( βα ,   0)1()0( =′=′ yy                                   (3) 

where )(tα  and )(tβ  are the continuous Gaussian random processes and linearly related to .  tw
For the solution of problem (3) consider direct and inverse initial problems  
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and 
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0)()()()( 22 =++′′ ttytty βα ,   1)1(2 =y ,   0)1(2 =′y  
This problems have unique solutions (see [4]) and one can to construct the Green function with 
the help of this solutions  
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where the Vronsky determinant 0)1(10 ≠= yν  ).( saP − . 
Under conditions listed above the solution of equation (3) exists, is unique and has the 

following form  
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where the integral is interpreted as Daletsky-Skorokhod extended stochastic integral. 
For strict mathematical basing of questions listed above it is necessary to substantiate 

understanding of problems (1), (3)  and like that, to prove existence of extended stochastic 
integral in right sides of (2), (4), also argue existence and uniqueness of solutions for problems 
(1), (3) and truth of equalities (2), (4). This investigation is devoted to this questions. 
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