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Asymptotical analysis of stochastic models of systems which are considered in a random 

medium, that is, the evolution of stochastic system is developed under the influence of random 
factors. The feature of an interaction between a system and a random medium is a unilateral 
affect of a random medium. The local characteristics of a system change with the change of 
states of a random medium. This particular feature of interaction is unified by the effective 
mathematical methods of analysis based on the problems of singular perturbation for reducible-
invertible operators.  

Stochastic models of systems are determined by two processes: a switched process 
describing the evolution of a system, and a switching process describing the changes of a 
random medium.  

It is assumed that the evolution of a system possesses a semi-group property and the 
random medium has an ergodic property.  

Enumerated properties of stochastic systems extract a class of systems represented by 
random evolution, as an operator-valued stochastic process in a Banach space.  

Effective mathematical tools of analysis are based on the problems of singular 
perturbation for reducible-invertible operators and on martingale characterization of Markov 
processes (see [1-4] and references there).  

Stochastic systems are considered in the series scheme with some small series parameter 
0>ε  and also, with two scales of time: real time for a system, and rapid time for a switching 

process.  
The diverse scheme of asymptotical analysis of stochastic systems can be reduced to the 

problem of singular perturbation of a reducible – invertible operator, which can be formulated in 
the following way. For a given vector B∈ψ  the asymptotic solution 

1εϕϕϕε +=  
of the equation 

[ ] εε υψϕε +=+−
1

1 QQ  
is constructed with the asymptotically negligible term 

 
:  εθ

0→εθ  as 0→ε . 

The generator Q  of uniformly ergodic Markov process possesses the reducibly invertible 
property.  

The Banach space B  can be represented as the direct sum 
QQ RNB ⊕=       (1) 

of the null-space { 0:: }== ϕϕ QNQ
 

and of the space of values { }ϕψϕ == QRQ :: . 

Decomposition (1) means that there exists the projector Π  onto null-space  and the 

potential operator  defined by the following relation  
QN

0R

[ ] Π−Π+= −1
0 : QR , 

satisfying the following properties: 
Π−Ι== QRQR 00 , 000 /=Π=Π RR . 

That is, the potential  is a reducible inverse operator to the operator Q . The general 
solution of equation 

0R
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ψϕ =Q  

can be represented as follows: 
00 ϕψϕ += R ,  QN∈0ϕ . 

There exist many situations which cannot be classified. Meanwhile, it is possible to 
extract some logically complete variants.  

The classification of problems of singular perturbation is based on properties of a 
contracted operator 1Q

)
 determined by the following relation 

ΠΠ=Π 11 QQ
)

. 

The contracted operator 1Q
)

 acts on the contracted null-space QN
)

. 
There are three logically complete variants: 

(i) 1Q
)

 be nonzero: OQ /≠1

)
; 

(ii) 1Q
)

 is zero-operator: 0=1ϕ
))Q  for all  QN

))∈ϕ ; 

(iii) 1Q
)

 is reducible – invertible: there exists null-space QQ NN ))
))

⊂
1

 such that 

11 QQQ RNN ))
)))

⊕= . 

 There exists also the potential operator [ ] Π−Π+=
− )))) 1

10 : QR , where  Π
)

 is the projector 

onto 
1QN )

)
 which is defined by the following relation 

1
)))) ϕϕ =Π , 

1QN )
))∈ϕ .  

The solutions of singular perturbation problems in these three variances are given in the 
following three propositions. 

 Proposition 1. Let the contracted operator 1Q
)

 be nonzero. Then the asymptotic 
representation 

[ ]( ) εθψεϕϕε +=++−
11

1 QQ  
can be realized by the relations 

ψϕ )))
=1Q ,

 
.  1εθθ ε =

Proposition 2. Let the contracted operator 1Q
)

 be a zero-operator: 01 =ϕ)
)

Q , QN
))∈∀ϕ   

Let in addition the operator  10120 QRQQQ −=  after contraction on the space QN )
)

 be nonzero. 

Then the asymptotic representation 
[ ]( ) εθψϕεεϕϕεε +=++++ −−

2
2

1
12 QQQ  21

can be realized by the following relations 
ψϕ )))

=0Q , . 2εθθ ε =

Proposition 3. Let the contracted operator  1Q
)

 be reducible – invertible with null-space 

QQ NN
))

) ⊂
1

, defined by the projector Π
)

. Let the twice contracted operator 2Q
)

 on 
1QN )

)
 defined 

by the relation 

ΠΠ=Π
))))))

22 QQ , ΠΠ=Π 22 QQ
)

, 
be nonzero. 

Then the asymptotic representation 
[ ]( ) εθψϕεεϕϕεε +=++++ −−

2
2

12
12 QQQ  1

can be realized by the following relations: 

ψϕ ))))
=2Q ,  3εθθ ε =
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Moreover, there exists more complicated situation of singular perturbation established of 
the combination of considered above facts.  

Analysis of stochastic systems is considered for the phase merging scheme for a Markov 
process on a splitting phase space, for the dynamical system with rapid Markov switchings 

( ) ( ) ( )( )εεε txtuCdttdu ,= ; 
in the phase average scheme; for the dynamical system with accelerated Markov switchings 

( ) ( ) ( )( )2, εεεε txtuCdttdu =  
in the diffusion approximation scheme and for the dynamical system with sharply accelerated 
Markov switchings 

( ) ( ) ( )( )3, εεεεε txtuCdttdu =  
in the diffusion approximation scheme with merging and averaging. 
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