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The ordinary sequential probability ratio test is defined by the crossing of linear 
boundaries by random walk. The linear boundaries a rise from sequential probability ratio tests 
of simple hypotheses against simple alternatives. For problems involving several parameters or 
composite hypotheses we’ll consider curved stopping boundaries, which have a complicated 
structure and so their investigations meet some difficulties [1,2]. 

The asymptotic formulas for approximation of a significance level, power and expected 
sample size for tests with linear and curved stopping boundaries will be discussed in this paper 
and it will be compared with results of [3]. 

In [3] the following boundary problem was investigated. Let nξ ,  be a sequence of 

independent and identically distributed random variable with finite mean value 

1≥n
1ξEV =  and it 

is assumed that the Borel function ,)(xΔ  ),( ∞−∞∈x  is given. Additionally assume 
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where , , )(tfa 0>a 0>t  is a some family of nonlinear boundaries and . ∞=∅}{inf
Note that the series of first passage time in theory of boundary crossing problems for 

random walks have the form aτ . For example, if xx ≡Δ )( , then we obtain the following first 
passage time 
 

})(:1{inf nfSnt ana ≥≥= , 
 
which was investigated in [3,4]. 

For  we have the following form of the first passage time atfa ≡)(
 

inf { 1: ( ) }a nv n S= ≥ Δ ≥ a  
 
see [1,4]. 

In sequential analysis the statistics in the form )( nn SnT Δ=  are widely used. 

Let Θ∈θθ ,F  be a one-parameter exponential family with natural parameter space , that 
is 

Θ

 
)()}({exp)( dxxdxF λθψθθ −= , ∞<<∞− x , Ω∈θ  

 
where λ  is a non-degenerated, sigma-finite measure on ),( ∞−∞  and Θ  consists all θ  for 
which }{exp xθ  is integrable function with respect to λ ; that is 

∞<= ∫ )()( dxee xλθθψ  

for Θ∈θ . 
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Recall that the log-likelihood function, given nξξ ,...,1  which common distribution  
is  

θF

])([)( θψθθ −= nn SnL , Θ∈θ . 

Consider testing of the hypothesis 0θθ =  versus 0θθ ≠ . 

Let )]}()([){(sup)( 00 θψθψθθ
θ

−−−=Δ xx , ),( ∞−∞∈x . 

Then )(
n

SnT n
n Δ=  is the log-likelihood ratio statistic for testing 0θθ =  versus 

0θθ ≠  on the basis of nξξ ,...,1 , . 1>n
As shown in [] the function )(xΔ  may be infinite for some values of x , but 

. The function  in special case is straightly forward to compute: 1)( =∞<nTP )(xΔ
   1) If  is the normal distribution with mean θF θ , ∞<<∞− θ  and has unit variance, then 

)(θψθ ′=  and 
2

)(
2θθψ = . If the null hypothesis is that 0:0 =θH , then it easily follows 

that  

2
)(

2xx =Δ . 

Consider a problem of testing the null hypothesis 0:0 =θH f a sample has (nonrandom) size 

n, then out comes for which the absolute value of nS

. I

nξξ ++= ...  1 exceeds n3 ould be 
regarded as strong evidence against the null hypothesis H  according to classical statistical 

theory. If data arrives sequentially and  is computed for each  them 
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In this case we have sample of the size 
 

}:1{inf naSnvv na ≥≥== , 
 

where  and reject  if 3≥a 0H vSv 3> .  

2) Let ...,, 21 ξξ  be independent random variables taking the values 1 and 0 with probabilities 
θ  and θ−1  respectively. Let nnS ξξ ++= ...1  and 
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Stop sampling at  and reject  if ),(min mva 0H mT ≤  or  and mT >
dmSmT mm ≥Δ= )( ( ).  ad ≤

We’ll assume that the function )(xΔ  is positive, twice continuous-differentiable on 
, moreover ),( ∞−∞∈x 0>)(Δ= vμ  and 0)( ≠Δ′ v . 

For the boundary  we’ll assume that it satisfies to the following conditions: )(tfa

1) for each a the function )(tfa  increases monotonically, is continuously differentiable 
for 0>t , and ∞↑)( t , f a ∞→a . 

2) ∞→= )(αnn , ∞→a . Thus μ→)(1 nfan  and θ→)  for some 
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(nfa

μθ ∈ . 

3) For each a the function )(tfa′  weakly oscillates at infinity, i.e. 
 

1
)(
)(
→

′
′

mf
nf

a

a  at 1→
m
n

, ∞→n . 

 
Denote )(μaa NN =  a solution of the equation μnnfa =)(  which exists for sufficiently 
large a [3]. Also denote )(xΦ  a standard normal distribution. 

Theorem. Let 1, ≥nnξ  be a sequence of independent and identically distributed random 

variables with , ∞<= 2
2 ξσ D 1ξEv =  and let above mentioned conditions are satisfied for 

function  and boundary . )(xΔ )(tfa
Then  
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where θμλ −= . 
Corollary. Let the conditions of the theorem are true and ∞→= )(αnn  as  such 
that 
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Theorem and corollary proved in [3]. 
We present example, which is especially instructive (see [1]). Let ...,, 21 ξξ  be 

independent and normally distributed random variables with mean μ  and unit variance. It is 
testing 00 : μμ =H  against 11 : μμ =H  (say 10 μμ < ). 

The likelihood ratio is 
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The stopping rule of sequentially probability ratio test can be written 
 

)},()(:1{inf 012 baSn n
n ∉+−≥= μμτ ,                                    (1) 

 

where 
01

log
μμ −

=
Aa , 

01
log

μμ −
=

Bb , ( BA <<1 ) are constants. 

If ∞<τ  the sequential probability ratio test rejects  if and only if  0H
 

)(
2 01 μμτ

++≥bSN . 

 
A simple special case is the symmetric one 01 μμ −= , ab −= , for which (1) becomes 

 
}:1{inf bSn nb ≥≥=τ . 

 
The main results of [3] implies approximation of the distribution of the sample size bτ : 
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We also study the approximation of the significance level and power of stopping rule  
by the results of work [3]. 
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