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The ordinary sequential probability ratio test is defined by the crossing of linear
boundaries by random walk. The linear boundaries a rise from sequential probability ratio tests
of simple hypotheses against simple alternatives. For problems involving several parameters or
composite hypotheses we’ll consider curved stopping boundaries, which have a complicated
structure and so their investigations meet some difficulties [1,2].

The asymptotic formulas for approximation of a significance level, power and expected
sample size for tests with linear and curved stopping boundaries will be discussed in this paper
and it will be compared with results of [3].

In [3] the following boundary problem was investigated. Let (fn , N >1 be a sequence of
independent and identically distributed random variable with finite mean value V =E&, and it

is assumed that the Borel function A (X), X€&(—00, o) is given. Additionally assume
4 = 1 _ )
S, = &.S,==S,.T,=nAS,). 7, =inf {n>1:T, > f,(n)},
_ n
k=1

where f a (t) ,a>0,t>0 isasome family of nonlinear boundaries and inf {@} =00,
Note that the series of first passage time in theory of boundary crossing problems for
random walks have the form 7. For example, if A (X) = X, then we obtain the following first

passage time
t,=inf{n>1: S, > f,(n)}.

which was investigated in [3,4].
For f a (t) =a we have the following form of the first passage time

v, =inf {n>1: A(S,)>a}

see [1,4].
In sequential analysis the statistics in the form Tn =NnA ( Sn ) are widely used.

Let F,, @ € ® be a one-parameter exponential family with natural parameter space ® , that

1S
F,(dX) =exp{@X—y (0)} A(dX), —o<Xx<0, 8 €Q

where A is a non-degenerated, sigma-finite measure on (—00, ) and ® consists all & for

which €Xp {(9 X} is integrable function with respect to A ; that is
e’ = e”2(dx)<oo
for 0 €®.
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Recall that the log-likelihood function, given f Lseees a’f n Which common distribution F@
is
L, (0)=n[6S, -y (0)].0cO®.
Consider testing of the hypothesis @ = (90 versus 0 # 00.

Let A(X) =Sl;p{(9—6’o)x — [y (@) —w ()]}, xe(~, ).

Sny . o .
Then T,=NA(—) is the log-likelihood ratio statistic for testing & =6, versus
n

0 # 0, on the basis of &,,...,&,, N> 1.
As shown in [] the function A(X) may be infinite for some values of X, but
P(T,, <o)=1. The function A(X) in special case is straightly forward to compute:

1) If F, is the normal distribution with mean @, —o0<@<co and has unit variance, then
(92
0 =y'(0) and w(0)= X If the null hypothesis is that H : @ = 0, then it easily follows

that

X2

A(X) =7.

Consider a problem of testing the null hypothesis H, : @ = 0. If a sample has (nonrandom) size

n, then out comes for which the absolute value of S, =& +...+ &, exceeds 3./n would be
regarded as strong evidence against the null hypothesis H, according to classical statistical

theory. If data arrives sequentially and S, is computed for each N >1 them |Sn| exceedes

3x/ﬁ for some n, even if H, is true. The low of an iterated logarithm asserts that

P| lim supM=lJ=l.

N— v/2nloglogn

In this case we have sample of the size

V=v, =inf{n>1:|S;|>avn},

where @ 2 3 and reject Hy if ‘SV‘> 3\/V.

2) Let &,&,,... be independent random variables taking the values 1 and 0 with probabilities
0 and 1-6 respectively. Let S, =& +...+ &, and
A(X) = XlogX+(1-X)log(l1-X) + log2. To test H,:0 =% against H;: 60 # % Let
1<my <m and

A :inf{ano ; nA{S—”]za}.
n
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Stop sampling at min(V,, M) and reject Hy if T<m o T>m and
Tm =MA(S,/m)>d (d<a).
We’ll assume that the function A(X) is positive, twice continuous-differentiable on
X & (—o0, ), moreover 4 =A(V)>0 and A'(V)#0.
For the boundary fa (1) we’ll assume that it satisfies to the following conditions:
1) for each a the function fa (t) increases monotonically, is continuously differentiable
for t >0, and f, (1) T o, d—>00.
2) n=n(a)—>x©, a—>0. Thus % fa(n) —> M and fa(n) — 6 for some
0e[0,u).
3) For each a the function fa' (t) weakly oscillates at infinity, i.e.

LF(0) R RN
f,(m) m

Denote N, = N_ () a solution of the equation fa(n) = Nu which exists for sufficiently
large a [3]. Also denote D(X) a standard normal distribution.

Theorem. Let fn, N>1 be a sequence of independent and identically distributed random

variables with &> = D&, <o, v=E& and let above mentioned conditions are satisfied for

function A(X) and boundary fa ).
Then

lim P(T ~-N <%Mj= D(x), r=[AW)|o,

a—o

where A= —6.
Corollary. Let the conditions of the theorem are true and N =N(a) —> 00 as & —> O such
that
f,(n)—n
— a( ) ,Ll — O(l) )
rvn
Then

lim[P(z, <n)—®d(-¢,)]=0.

Theorem and corollary proved in [3].
We present example, which is especially instructive (see [1]). Let &, &,,... be
independent and normally distributed random variables with mean g and unit variance. It is
testing H: ¢ = p against Hy: p = (say o <py).
The likelihood ratio is
_H Pk =) _ (Un=r0)Sn =3 (1 ~1d)
b (&)
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n
where (p(X):%e_xz/2 and Snzz Sk -
k=1

The stopping rule of sequentially probability ratio test can be written

r=inf{n>1: S, —Z(u + 1o) 2(a,b)}, (1)

where a = log , b =log
H —Ho H—Ho

If 7 <o the sequential probability ratio test rejects Hy if and only if

, (A<1< B) are constants.

T
SN Zb"‘z(ﬂl + ) -
A simple special case is the symmetric one £ =— 4, b =—a, for which (1) becomes
7 =inf{n>1:|S,|>b}.

The main results of [3] implies approximation of the distribution of the sample size T},:

nu—b
Pﬂ(rbsn)zoD[“ ),,u;t().

Jn

We also study the approximation of the significance level and power of stopping rule t,
by the results of work [3].
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