
“Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransı

Bakı şəhəri, 25 fevral 2016-cı il

14

An Efficient İncremental Clustering Algorithm for

Very Large Data Sets

Adil M. Bagirov
1
, Sona Taheri

2
, Julien Ugon

3

1,2,3
Faculty of Science and Technology, Federation University Australia, Victoria, Australia

1
a.bagirov@federation.edu.au

Abstract— An algorithm for solving the minimum sum of squares
clustering problems in large data sets is introduced. This
algorithm uses a special structure of the clustering problem such
as difference of convex representations of its objective functions.
The use of such a structure allows one to design a clustering
algorithm which is efficient in large and very large data sets. The
proposed algorithm is tested and compared with other clustering
algorithms using large real world data sets.

Keywords— Large data sets, cluster analysis, nonsmooth
optimization, difference of convex representation.

I. INTRODUCTION

Clustering is an unsupervised partitioning technique

dealing with the problems of organizing a collection of

patterns into clusters based on similarity. Most clustering

algorithms are based on the hierarchical and partitional

approaches. Algorithms based on the hierarchical approach

generate a dendrogram representing the nested grouping of

patterns and similarity levels at which groupings change [12].

Partitional clustering algorithms find the partition that

optimizes a clustering criterion [12]. In this paper we develop

a partitional clustering algorithm. More specifically, we

develop an algorithm for solving the minimum sum-of-squares

clustering (MSSC) problems.

The objective functions of the clustering problems, called
cluster functions, can be represented as a difference of convex
(DC) functions. There are several papers where the DC
representation of the MSSC problems is used to design
algorithms. In [10], the truncated codifferential method is
applied to solve the MSSC using its DC representation. The
branch and bound method was modified for such problems in
[16] using their DC representation. In [1] an algorithm based
on DC programming and DC Algorithms (DCA) is introduced.
In [3], the authors use the hard combinatorial optimization
model to formulate MSSC as a DC program and propose an
algorithm based on DCA. Such an approach allows one to
make simpler and less expensive computations in the resulting
DCA. In [2], the DCA and a Gaussian kernel are applied to
design an algorithm to solve the MSSC problem. All these
algorithms are not always efficient for solving clustering
problems in large data sets containing hundreds of thousands
and more data points.

In this paper, we design an algorithm for solving the

MSSC problem based on its DC representation. Results of

numerical experiments on some real world data sets are

reported and the proposed algorithm is compared with several

other clustering algorithms. It is demonstrated that the

proposed algorithm is especially efficient for solving the

MSSC problems in very large data sets.

In what follows we denote by 𝐼𝑅𝑛
the 𝑛 -dimensional

Euclidean space with the inner product 〈𝑢, 𝑣〉 = ∑ 𝑢𝑖𝑣𝑖
𝑛
𝑖=1 and

the associated norm ‖𝑢‖ = 〈𝑢, 𝑢〉1 2⁄ , 𝑢, 𝑣 ∈ 𝐼𝑅𝑛 . 𝐵𝜖(𝑥) =
{𝑦 ∈ 𝐼𝑅𝑛: ‖𝑦 − 𝑥‖ < 𝜀} is the open ball centered at x with the

radius 𝜀 > 0.

II. DC PROGRAMMING APPROACH TO

CLUSTERING PROBLEMS

In this section we give a nonsmooth optimization

formulation of clustering problems and their DC

representations.

Definition 1. 𝑓 ∶ 𝐼𝑅𝑛 → 𝐼𝑅 is called a DC function if

there exist convex functions 𝑔, ℎ: 𝐼𝑅𝑛 → 𝐼𝑅 such that:

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), 𝑥 ∈ 𝐼𝑅𝑛.

Here 𝑔 − ℎ is called a DC decomposition of 𝑓 while 𝑔 and

ℎ are DC components of 𝑓. A function 𝑓 is locally DC if for

any 𝑥0 ∈ 𝐼𝑅𝑛, there exist 𝜀 > 0 such that 𝑓 is DC on the ball

𝐵𝜖(𝑥0). It is well known that every locally DC function is DC

[11]. Note that a DC function has infinitely many DC

decompositions.

An unconstrained DC program is an optimization problem

of the form:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) subject to 𝑥 ∈ 𝐼𝑅𝑛. (1)

In cluster analysis we assume that we are given a finite set

of points A in the 𝑛 −dimensional space 𝐼𝑅𝑛 , that is 𝐴 =
{𝑎1, . . . , 𝑎𝑚} , where 𝑎𝑖 ∈ 𝐼𝑅𝑛 , 𝑖 = 1, . . . , 𝑚 . The hard

unconstrained clustering problem is the distribution of the

points of the set 𝐴 into a given number 𝑘 of disjoint subsets

𝐴𝑗, 𝑗 = 1, . . . , 𝑘 such that:

1. 𝐴𝑗 = ∅𝑘 and 𝐴𝑗 ∩ 𝐴𝑙 = ∅, 𝑗, 𝑙 = 1, . . . , 𝑘, 𝑗 = 𝑙.

2. 𝐴 = ⋃ 𝐴𝑗𝑘
𝑗=1

“Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransı

Bakı şəhəri, 25 fevral 2016-cı il

15

The sets 𝐴𝑗 , 𝑗 = 1, . . . , 𝑘 are called clusters and each

cluster 𝐴𝑗
can be identified by its center 𝑥𝑗 ∈ 𝐼𝑅𝑛 , 𝑗 = 1, . . . , 𝑘.

The problem of finding these centers is called the 𝑘 -

clustering (or 𝑘-partition) problem. In order to formulate the

clustering problem one needs to define the similarity (or

dissimilarity) measure. Here the similarity measure is defined

using the 𝐿2 norm:

𝑑2(𝑥, 𝑎) = ∑ (𝑥𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

.

The nonsmooth optimization formulation of the MSSC

problem is [7], [9]:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑘(𝑥) subject to 𝑥 = (𝑥1, … , 𝑥𝑘 ∈ 𝐼𝑅𝑛𝑘), (2)

where

𝑓𝑘(𝑥1, … , 𝑥𝑘) =
1

𝑚
∑ min𝑗=1,… ,𝑘 𝑑2(𝑥𝑗, 𝑎)𝑎∈𝐴 (3)

The objective function 𝑓𝑘 in Problem (2) can be expressed

as a DC function:

𝑓𝑘(𝑥) = 𝑓𝑘1(𝑥) − 𝑓𝑘2(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑘 ∈ 𝐼𝑅𝑛𝑘), (4)

Where

𝑓𝑘1(𝑥) =
1

𝑚
∑ ∑ 𝑑2(𝑥𝑗, 𝑎)

𝑘

𝑗=1𝑎∈𝐴

𝑓𝑘2(𝑥) =
1

𝑚
∑ m𝑎𝑥

𝑗=1,… ,𝑘
∑ 𝑑2(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗𝑎∈𝐴

Since the function 𝑑2 is convex in 𝑥 the function 𝑓𝑘1 as a

sum of convex functions is also convex. The function 𝑓𝑘2 is a

sum of maxima of sum of convex functions. Since the sum of

convex functions is convex, the functions under maximum are

convex. Furthermore, since the maximum of a finite number

of convex functions is also convex, the function 𝑓𝑘2 is a sum of

convex functions and therefore it is also convex.

Problem (2) is a global optimization problem, the objective

function 𝑓𝑘 in this problem has many local minimizers and

only its global minimizers provide the best cluster structure of

a data set with the least number of clusters. In general,

conventional global optimization methods cannot be applied to

solve this problem in large data sets. Therefore in such data

sets heuristics and deterministic local search algorithms are

the only choice. But the success of these algorithms heavily

depends on the choice of starting cluster centers and the

development of efficient procedures for generating starting

clusters centers is crucial for the success of such algorithms.

We apply an approach introduced in [15] to find starting

cluster centers. This approach involves the solution of the so-

called auxiliary clustering problem.

Assume that the solution 𝑥1, … , 𝑥𝑘−1, 𝑘 ≥ 2 to the

(𝑘 − 1) -clustering problem is known. Denote by 𝑟𝑘−1
𝑎 the

distance between the data point 𝑎 ∈ 𝐴 and the closest cluster

center among 𝑘 − 1 centers 𝑥1, … , 𝑥𝑘−1:

𝑟𝑘−1
𝑎 = 𝑚𝑖𝑛{𝑑2(𝑥1, 𝑎), … , 𝑑2(𝑥𝑘−1, 𝑎)}. (5)

The k-th auxiliary cluster function is defined as [5]:

𝑓�̅�(𝑦) =
1

𝑚
∑ 𝑚𝑖𝑛{𝑟𝑘−1

𝑎 , 𝑑2(𝑦, 𝑎)},𝑎∈𝐴 𝑦 ∈ 𝐼𝑅𝑛 . (6)

This function is nonsmooth, locally Lipschitz, directionally

differentiable and as a sum of minima of convex functions it

is, in general, nonconvex. It is obvious that 𝑓�̅�(𝑦) =
𝑓𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑦), ∀𝑦 ∈ 𝐼𝑅𝑛.

A problem:

 minimize 𝑓�̅�(𝑦) subject to 𝑦 ∈ 𝐼𝑅𝑛
(7)

is called the k-th auxiliary clustering problem [5]. The DC

representation of the function 𝑓�̅� is as follows:

 𝑓�̅�(𝑦) = 𝑓�̅�1(𝑦) − 𝑓�̅�2(𝑦) (8)

Where

𝑓�̅�1(𝑦) =
1

𝑚
∑(𝑟𝑘−1

𝑎 + 𝑑2(𝑦, 𝑎)),

𝑎∈𝐴

𝑓�̅�2(𝑦) =
1

𝑚
∑ 𝑚𝑎𝑥{𝑟𝑘−1

𝑎 , 𝑑2(𝑦, 𝑎)},

𝑎∈𝐴

An algorithm for solving optimization problems for

solving both Problems (2) and (7) is described in [8]. This

algorithm is based on DC representations of both clustering

and auxiliary clustering functions.

III. INCREMENTAL ALGORITHM

In this section we present an incremental algorithm for

solving Problems (2) and (7) using the DC approach. An

important part of this algorithm is a procedure for finding

“Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransı

Bakı şəhəri, 25 fevral 2016-cı il

16

starting points for the 𝑙 -th cluster center where 1 ≤ 𝑙 ≤ 𝑘 .

This procedure was described in detail in [15].

Algorithm 1 An incremental clustering algorithm.

1: (Initialization). Compute the center 𝑥1 ∈ 𝐼𝑅𝑛
of the set 𝐴.

Set 𝑙: = 1.

2: (Stopping criterion). Set 𝑙: = 𝑙 + 1. If 𝑙 > 𝑘 then stop. The

𝑘-partition problem has been solved.

3: (Computation of a set of starting points for the auxiliary

clustering problem). Apply the procedure from [15] to find the

set 𝑆1 ⊂ 𝐼𝑅𝑛
of starting points for solving the auxiliary

clustering problem (7) for 𝑘 = 𝑙.

4: (Computation of a set of starting points for the 𝑙-th cluster

center). Apply the optimization algorithm to solve Problem (7)

starting from each point 𝑦 ∈ 𝑆1. This algorithm generates a set

𝑆2 ⊂ 𝐼𝑅𝑛
of starting points for the 𝑙-th cluster center.

5: (Computation of a set of cluster centers). For each �̅� ∈ 𝑆2

apply the optimization to solve Problem (2) starting from the

point (𝑥1, … , 𝑥𝑙−1, �̅�) and find a solution (�̂�1, . . . , �̂�𝑙). Denote

by 𝑆3 ⊂ 𝐼𝑅𝑛𝑙
a set of all such solutions.

6: (Computation of the best solution). Compute

𝑓𝑙
𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑓𝑙(�̂�1, . . . , �̂�𝑙): (�̂�1, . . . , �̂�𝑙) ∈ 𝑆3}

and the collection of cluster centers (�̅�1, . . . , �̅�𝑙) such that

𝑓𝑙 = (�̅�1, . . . , �̅�𝑙) = 𝑓𝑙
𝑚𝑖𝑛.

7: (Solution to the 𝑙 -partition problem). Set 𝑥𝑗: = �̅�𝑗 , 𝑗 =
1, . . . , 𝑙 as a solution to the l-th partition problem and go to

Step 2.

Since the clustering Algorithm 1 applies the optimization

based on the DC representation to solve clustering problems it

is called the DCClust algorithm. It is easy to see that this

algorithm in addition to the 𝑘-partition problem solves also all

intermediate 𝑙 -partition problems where 𝑙 = 1, . . . , 𝑘 − 1 .

Steps 4 and 5 are the most time-consuming steps of this

algorithm as the optimization is applied repeatedly.

TABLE 1. THE BRIEF DESCRIPTION OF DATA SETS

Data sets
Number of

instances
Number of

attributes

Gas Sensor Array

Drift
13910 128

Skin Segmentation 245057 3

3D Road Network 434874 3

We compare the DCClust with the following algorithms:

1. The global 𝑘-means algorithm (GKM) [14].

2. The Multi-start modified global 𝑘 -means algorithm

(MSMGKM) [15].

3. The version of the Algorithm 1 where the optimization

algorithm is replaced by the DCA [4] (MS-DCA).

All these algorithms are based on the incremental

approach. The DCClust algorithm contains a special procedure

to generate starting cluster centers (Step 3) which is described

in detail in [6], [15]. To design the version of Algorithm 1

with the DCA in Steps 4 and 5 the optimization algorithm is

replaced by the DCA.

IV. NUMERICAL RESULTS

To test the DCClust algorithm and compare it with other

three clustering algorithms numerical experiments with a

number of real-world data sets have been carried out.

Algorithms were implemented in Fortran 95 and compiled

using the gfortran compiler. Computational results were

obtained on a PC with the CPU Intel(R) Core(TM) i5-3470S

2.90 GHz and RAM 8 GB. Three data sets have been used in

numerical experiments. Their brief description is given in

Table I. The detailed description can be found in [13]. All data

sets contain only numeric features and they do not have

missing values.

We computed up to 25 clusters in all data sets. The CPU

time used by algorithms is limited to 20 hours. Since all

algorithms computes clusters incrementally we present results

with the maximum number of clusters obtained by an

algorithm during this time limit. Results for cluster function

values found by different algorithms are presented in Table II.

In this table we use the following notation:

• k is the number of clusters;

• 𝑓𝑏𝑒𝑠𝑡 (multiplied by the number shown after names of data

sets) is the best known value of the cluster function (3)

(multiplied by m) for the corresponding number of

clusters;

• 𝐸𝐴 is the error in % by an algorithm A which is calculated

as follows:

𝐸𝐴 =
𝑓̅ − 𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡

× 100%

where 𝑓̅ is the value of the clustering function obtained by

an algorithm A;

• The sign “-” in tables shows that an algorithm failed to

compute clusters in the given time frame.

Results presented in Table II show that all four algorithms

are able to find global or near global solutions to clustering

“Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransı

Bakı şəhəri, 25 fevral 2016-cı il

17

TABLE 2. CLUSTER FUNCTION VALUES OBTAINED BY

ALGORITHMS

k fbest
EDCClu

st

EMS−DC

A

EMGK

M
EGKM

Gas Sensor Array Drift (×1013)

2 79.11857 0.00 0.00 0.00 0.00

3 5.02412 0.00 0.00 0.00 0.00

5 3.22726 0.00 0.00 0.00 0.00

10 1.65524 0.00 0.00 0.00 0.00

12 1.40655 0.00 0.01 0.01 0.00

15 1.13801 0.35 0.00 0.00 0.36

20 0.87916 0.62 0.16 0.00 0.62

25 0.72348 0.47 0.00 0.00 0.16

Skin Segmentation (×109)

2 1.32236 0.00 0.00 0.00 0.00

3 0.89362 0.00 0.00 0.00 0.00

5 0.50203 0.00 0.00 0.00 0.00

10 0.25122 0.00 0.00 0.00 0.00

12 0.21416 0.00 0.55 0.55 0.00

15 0.16964 0.18 0.19 0.18 0.00

20 0.12770 0.14 0.17 0.17 0.00

25 0.10299 0.00 0.00 0.00 0.00

3D Road Network (×106)

2 49.13298 0.00 0.00 0.00 0.00

3 22.77818 0.00 0.00 0.00 0.00

5 8.82574 0.00 0.01 0.00 0.00

10 2.56710 0.00 0.21 - -

12 1.84976 0.00 0.05 - -

15 1.27072 0.00 0.26 - -

20 0.80872 0.00 0.73 - -

25 0.60334 1.93 0.00 - -

problems in large data sets, however the GKM and

MSMGKM algorithms are not efficient for solving clustering

problems within a given timeframe in data sets with hundreds

of thousands of points.

Figures 1(a)-1(c) illustrate dependence of the number of

distance function evaluations (𝑁𝑑) on the number of clusters

for four algorithms in all data sets. These figures demonstrate

that the MS-MGKM algorithm requires the least number of

distance function evaluations in two data sets. In the 3D Road

Network data set this algorithm computed only 6 clusters

within a 20 hours timeframe and the number 𝑁𝑑 is similar to

that of by the MS-DCA and DCClust algorithms. For the

GKM algorithm 𝑁𝑑 depends linearly on the number of

clusters, however this algorithm requires significantly more

distance function evaluations than other three algorithms.

Comparison of the DCClust and the MS-DCA algorithms

shows that the latter algorithm requires more distance function

evaluations than the former algorithm.

Figures 2(a)-2(c) illustrate dependence of the CPU time on

the number of clusters for four algorithms in all data sets. It is

obvious that the DCClust algorithm requires least CPU time

among all four algorithms.

V. CONCLUSION

In this paper an algorithm for solving the minimum sumof-

squares clustering problems is designed using their DC

representation. The algorithm is an incremental algorithm and

computes clusters gradually starting from one cluster which

(a)

(b)

(c)

Figure 1. The number of distance function calculations vs the number of
clusters.

“Big data: imkanları, multidissiplinar problemləri və perspektivləri” I respublika elmi-praktiki konfransı

Bakı şəhəri, 25 fevral 2016-cı il

18

(a)

(b)

(c)

Figure 2. The CPU time vs the number of clusters.

is the whole data set. The proposed algorithm is tested using

real world data sets with the number of data points ranging

from tens of thousands to hundreds of thousands and

compared with other clustering algorithms. Results clearly

demonstrate that the use of the DC representation of clustering

problems allows one to significantly improve ability of

incremental algorithms to solve clustering problems in very

large data sets in a reasonable time. Furthermore, the use of

nonsmooth optimization algorithms can increase this ability

for even larger data sets.

ACKNOWLEDGMENT

This research by Dr. Adil Bagirov and Dr. Sona Taheri was

supported under Australian Research Council’s Discovery

Projects funding scheme (Project No. DP140103213).

REFERENCES

[1] L.T.H. An, M.T. Belghiti, and P.D. Tao. A new efficient algorithm
based on DC programming and DCA for clustering. J. of Global
Optim., 37(4):593–608, 2007.

[2] L.T.H. An, L.H. Minh, and P.D. Tao. New and efficient DCA based
algorithms for minimum sum-of-squares clustering. Pattern
Recognition, 47:388–401, 2014.

[3] L.T.H. An and P.D. Tao. Minimum sum-of-squares clustering by DC
programming and DCA. In D.-S. Huang, K.-H. Jo, H.-H. Lee, H.-J.
Kang, and V. Bevilacqua, editors, Emerging Intelligent Computing
Technology and Applications. With Aspects of Artificial Intelligence,
ICIC 2009, LNAI-5755, pages 327–340. Springer-Verlag, Berlin,
Heidelberg.

[4] L.T.H. An and P.D. Tao. The DC (difference of convex functions)
programming and DCA revisited with DC models of real world
nonconvex optimization problems. Annals of Operations Research,
133:23–46, 2005.

[5] A.M. Bagirov. Modified global k-means algorithm for minimum
sumof-squares clustering problems. Pattern Recognition, 41(10):3192–
3199, 2008.

[6] A.M. Bagirov, B. Ordin, G. Ozturk, and A.E. Xavier. An incremental
clustering algorithm based on hyperbolic smoothing. Computational
Optimization and Applications, 61:219–241, 2015.

[7] A.M. Bagirov, A.M. Rubinov, N.V. Soukhoroukova, and J. Yearwood.
Unsupervised and supervised data classification via nonsmooth and
global optimization. Top, 11:1–93, 2003.

[8] A.M. Bagirov, S. Taheri, and J. Ugon. Nonsmooth dc programming
approach to the minimum sum-of-squares clustering problems. Pattern
Recognition, submitted, 2015.

[9] A.M. Bagirov and J. Yearwood. A new nonsmooth optimization
algorithm for minimum sum-of-squares clustering problems. European
Journal of Operational Research, 170(2):578–596, 2006.

[10] V.F. Demyanov, A.M. Bagirov, and A.M. Rubinov. A method of
truncated codifferential with application to some problems of cluster
analysis. Journal of Global Optimization, 23(1):63–80, 2002.

[11] R. Horst and N.V. Thoai. DC programming: Overview. Journal of
Optimization Theory and Applications, 103(1):1–43, 1999.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Comput. Surv., 31(3):264–323, 1999.

[13] M. Lichman. UCI machine learning repository,
http://archive.ics.uci.edu/ml, University of California, Irvine, School of
Information and Computer Sciences, 2013.

[14] A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering
algorithm. Pattern Recognition, 36(2):451–461, 2003.

[15] B. Ordin and A.M. Bagirov. A heuristic algorithm for solving the
minimum sum-of-squares clustering problems. Journal of Global
Optimization, 61:341–361, 2015.

[16] Hoang Tuy, A.M. Bagirov, and A.M. Rubinov. Clustering via DC
optimization. In Advances in Convex Analysis and Global
Optimization, pages 221–234. Springer, 2001.

