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Abstract— An algorithm for solving the minimum sum of squares 
clustering problems in large data sets is introduced. This 
algorithm uses a special structure of the clustering problem such 
as difference of convex representations of its objective functions. 
The use of such a structure allows one to design a clustering 
algorithm which is efficient in large and very large data sets. The 
proposed algorithm is tested and compared with other clustering 
algorithms using large real world data sets. 
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I. INTRODUCTION 

Clustering is an unsupervised partitioning technique 

dealing with the problems of organizing a collection of 

patterns into clusters based on similarity. Most clustering 

algorithms are based on the hierarchical and partitional 

approaches. Algorithms based on the hierarchical approach 

generate a dendrogram representing the nested grouping of 

patterns and similarity levels at which groupings change [12]. 

Partitional clustering algorithms find the partition that 

optimizes a clustering criterion [12]. In this paper we develop 

a partitional clustering algorithm. More specifically, we 

develop an algorithm for solving the minimum sum-of-squares 

clustering (MSSC) problems. 

The objective functions of the clustering problems, called 
cluster functions, can be represented as a difference of convex 
(DC) functions. There are several papers where the DC 
representation of the MSSC problems is used to design 
algorithms. In [10], the truncated codifferential method is 
applied to solve the MSSC using its DC representation. The 
branch and bound method was modified for such problems in 
[16] using their DC representation. In [1] an algorithm based 
on DC programming and DC Algorithms (DCA) is introduced. 
In [3], the authors use the hard combinatorial optimization 
model to formulate MSSC as a DC program and propose an 
algorithm based on DCA. Such an approach allows one to 
make simpler and less expensive computations in the resulting 
DCA. In [2], the DCA and a Gaussian kernel are applied to 
design an algorithm to solve the MSSC problem. All these 
algorithms are not always efficient for solving clustering 
problems in large data sets containing hundreds of thousands 
and more data points. 

In this paper, we design an algorithm for solving the 

MSSC problem based on its DC representation. Results of 

numerical experiments on some real world data sets are 

reported and the proposed algorithm is compared with several 

other clustering algorithms. It is demonstrated that the 

proposed algorithm is especially efficient for solving the 

MSSC problems in very large data sets. 

In what follows we denote by 𝐼𝑅𝑛  
the 𝑛 -dimensional 

Euclidean space with the inner product 〈𝑢, 𝑣〉 = ∑ 𝑢𝑖𝑣𝑖
𝑛
𝑖=1  and 

the associated norm ‖𝑢‖ = 〈𝑢, 𝑢〉1 2⁄ , 𝑢, 𝑣 ∈ 𝐼𝑅𝑛 . 𝐵𝜖(𝑥) =
{𝑦 ∈ 𝐼𝑅𝑛: ‖𝑦 − 𝑥‖ < 𝜀} is the open ball centered at x with the 

radius 𝜀 > 0. 

II. DC PROGRAMMING APPROACH TO 

CLUSTERING PROBLEMS 

In this section we give a nonsmooth optimization 

formulation of clustering problems and their DC 

representations. 

Definition 1. 𝑓 ∶  𝐼𝑅𝑛 → 𝐼𝑅 is called a DC function if 

there exist convex functions 𝑔, ℎ: 𝐼𝑅𝑛 → 𝐼𝑅 such that: 

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), 𝑥 ∈ 𝐼𝑅𝑛. 

Here 𝑔 − ℎ is called a DC decomposition of 𝑓 while 𝑔 and 

ℎ are DC components of 𝑓. A function 𝑓 is locally DC if for 

any 𝑥0 ∈ 𝐼𝑅𝑛, there exist 𝜀 > 0 such that 𝑓 is DC on the ball 

𝐵𝜖(𝑥0). It is well known that every locally DC function is DC 

[11]. Note that a DC function has infinitely many DC 

decompositions. 

An unconstrained DC program is an optimization problem 

of the form: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) subject to 𝑥 ∈ 𝐼𝑅𝑛. (1) 

In cluster analysis we assume that we are given a finite set 

of points A in the 𝑛 −dimensional space 𝐼𝑅𝑛 , that is 𝐴 =
{𝑎1, . . . , 𝑎𝑚} , where 𝑎𝑖 ∈ 𝐼𝑅𝑛 , 𝑖 = 1, . . . , 𝑚 . The hard 

unconstrained clustering problem is the distribution of the 

points of the set 𝐴 into a given number 𝑘 of disjoint subsets 

𝐴𝑗, 𝑗 = 1, . . . , 𝑘 such that: 

1. 𝐴𝑗 = ∅𝑘 and 𝐴𝑗 ∩ 𝐴𝑙 = ∅, 𝑗, 𝑙 = 1, . . . , 𝑘, 𝑗 = 𝑙. 

2. 𝐴 = ⋃ 𝐴𝑗𝑘
𝑗=1  
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The sets 𝐴𝑗 , 𝑗 = 1, . . . , 𝑘  are called clusters and each 

cluster 𝐴𝑗  
can be identified by its center 𝑥𝑗 ∈ 𝐼𝑅𝑛 , 𝑗 = 1, . . . , 𝑘. 

The problem of finding these centers is called the 𝑘 -

clustering (or 𝑘-partition) problem. In order to formulate the 

clustering problem one needs to define the similarity (or 

dissimilarity) measure. Here the similarity measure is defined 

using the 𝐿2 norm: 

𝑑2(𝑥, 𝑎) = ∑ (𝑥𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

. 

The nonsmooth optimization formulation of the MSSC 

problem is [7], [9]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑘(𝑥) subject to 𝑥 = (𝑥1, … , 𝑥𝑘 ∈ 𝐼𝑅𝑛𝑘),    (2) 

where 

𝑓𝑘(𝑥1, … , 𝑥𝑘) =
1

𝑚
∑ min𝑗=1,… ,𝑘 𝑑2(𝑥𝑗, 𝑎)𝑎∈𝐴    (3) 

The objective function 𝑓𝑘 in Problem (2) can be expressed 

as a DC function: 

𝑓𝑘(𝑥) = 𝑓𝑘1(𝑥) − 𝑓𝑘2(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑘 ∈ 𝐼𝑅𝑛𝑘),         (4) 

Where 

𝑓𝑘1(𝑥) =
1

𝑚
∑ ∑ 𝑑2(𝑥𝑗, 𝑎)

𝑘

𝑗=1𝑎∈𝐴

 

𝑓𝑘2(𝑥) =
1

𝑚
∑ m𝑎𝑥

𝑗=1,… ,𝑘
∑ 𝑑2(𝑥𝑠, 𝑎)

𝑘

𝑠=1,𝑠≠𝑗𝑎∈𝐴

 

Since the function 𝑑2  is convex in 𝑥 the function 𝑓𝑘1  as a 

sum of convex functions is also convex. The function 𝑓𝑘2 is a 

sum of maxima of sum of convex functions. Since the sum of 

convex functions is convex, the functions under maximum are 

convex. Furthermore, since the maximum of a finite number 

of convex functions is also convex, the function 𝑓𝑘2 is a sum of 

convex functions and therefore it is also convex. 

Problem (2) is a global optimization problem, the objective 

function 𝑓𝑘 in this problem has many local minimizers and 

only its global minimizers provide the best cluster structure of 

a data set with the least number of clusters. In general, 

conventional global optimization methods cannot be applied to 

solve this problem in large data sets. Therefore in such data 

sets heuristics and deterministic local search algorithms are 

the only choice. But the success of these algorithms heavily 

depends on the choice of starting cluster centers and the 

development of efficient procedures for generating starting 

clusters centers is crucial for the success of such algorithms. 

We apply an approach introduced in [15] to find starting 

cluster centers. This approach involves the solution of the so-

called auxiliary clustering problem. 

Assume that the solution 𝑥1, … , 𝑥𝑘−1, 𝑘 ≥ 2  to the 

(𝑘 − 1) -clustering problem is known. Denote by 𝑟𝑘−1
𝑎  the 

distance between the data point 𝑎 ∈ 𝐴 and the closest cluster 

center among 𝑘 − 1 centers 𝑥1, … , 𝑥𝑘−1: 

𝑟𝑘−1
𝑎 = 𝑚𝑖𝑛{𝑑2(𝑥1, 𝑎), … , 𝑑2(𝑥𝑘−1, 𝑎)}.   (5) 

The k-th auxiliary cluster function is defined as [5]: 

𝑓�̅�(𝑦) =
1

𝑚
∑ 𝑚𝑖𝑛{𝑟𝑘−1

𝑎 , 𝑑2(𝑦, 𝑎)},𝑎∈𝐴  𝑦 ∈ 𝐼𝑅𝑛 . (6) 

This function is nonsmooth, locally Lipschitz, directionally 

differentiable and as a sum of minima of convex functions it 

is, in general, nonconvex. It is obvious that 𝑓�̅�(𝑦) =
𝑓𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑦), ∀𝑦 ∈ 𝐼𝑅𝑛. 

A problem: 

 minimize 𝑓�̅�(𝑦) subject to 𝑦 ∈ 𝐼𝑅𝑛  
(7) 

is called the k-th auxiliary clustering problem [5]. The DC 

representation of the function 𝑓�̅� is as follows: 

 𝑓�̅�(𝑦) = 𝑓�̅�1(𝑦) − 𝑓�̅�2(𝑦) (8) 

Where 

𝑓�̅�1(𝑦) =
1

𝑚
∑(𝑟𝑘−1

𝑎 +  𝑑2(𝑦, 𝑎)),

𝑎∈𝐴

 

𝑓�̅�2(𝑦) =
1

𝑚
∑ 𝑚𝑎𝑥{𝑟𝑘−1

𝑎 , 𝑑2(𝑦, 𝑎)},

𝑎∈𝐴

 

An algorithm for solving optimization problems for 

solving both Problems (2) and (7) is described in [8]. This 

algorithm is based on DC representations of both clustering 

and auxiliary clustering functions. 

III. INCREMENTAL ALGORITHM 

In this section we present an incremental algorithm for 

solving Problems (2) and (7) using the DC approach. An 

important part of this algorithm is a procedure for finding 
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starting points for the 𝑙 -th cluster center where 1 ≤ 𝑙 ≤ 𝑘 . 

This procedure was described in detail in [15]. 

Algorithm 1 An incremental clustering algorithm. 

1: (Initialization). Compute the center 𝑥1 ∈ 𝐼𝑅𝑛  
of the set 𝐴. 

Set 𝑙: = 1. 

2: (Stopping criterion). Set 𝑙: = 𝑙 + 1. If 𝑙 > 𝑘 then stop. The 

𝑘-partition problem has been solved. 

3: (Computation of a set of starting points for the auxiliary 

clustering problem). Apply the procedure from [15] to find the 

set 𝑆1 ⊂ 𝐼𝑅𝑛  
of starting points for solving the auxiliary 

clustering problem (7) for 𝑘 = 𝑙. 

4: (Computation of a set of starting points for the 𝑙-th cluster 

center). Apply the optimization algorithm to solve Problem (7) 

starting from each point 𝑦 ∈ 𝑆1. This algorithm generates a set 

𝑆2 ⊂ 𝐼𝑅𝑛  
of starting points for the 𝑙-th cluster center. 

5: (Computation of a set of cluster centers). For each �̅� ∈ 𝑆2  

apply the optimization to solve Problem (2) starting from the 

point (𝑥1, … , 𝑥𝑙−1, �̅�) and find a solution (�̂�1, . . . , �̂�𝑙). Denote 

by 𝑆3 ⊂ 𝐼𝑅𝑛𝑙  
a set of all such solutions. 

6: (Computation of the best solution). Compute 

𝑓𝑙
𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑓𝑙(�̂�1, . . . , �̂�𝑙): (�̂�1, . . . , �̂�𝑙) ∈ 𝑆3} 

and the collection of cluster centers (�̅�1, . . . , �̅�𝑙)  such that 

𝑓𝑙 = (�̅�1, . . . , �̅�𝑙) = 𝑓𝑙
𝑚𝑖𝑛. 

7: (Solution to the 𝑙 -partition problem). Set 𝑥𝑗: = �̅�𝑗 , 𝑗 =
1, . . . , 𝑙 as a solution to the l-th partition problem and go to 

Step 2. 

Since the clustering Algorithm 1 applies the optimization 

based on the DC representation to solve clustering problems it 

is called the DCClust algorithm. It is easy to see that this 

algorithm in addition to the 𝑘-partition problem solves also all 

intermediate 𝑙 -partition problems where 𝑙 = 1, . . . , 𝑘 − 1 . 

Steps 4 and 5 are the most time-consuming steps of this 

algorithm as the optimization is applied repeatedly. 

TABLE 1. THE BRIEF DESCRIPTION OF DATA SETS 

Data sets 
Number of 

instances 
Number of 

attributes 

Gas Sensor Array 

Drift 
13910 128 

Skin Segmentation 245057 3 

3D Road Network 434874 3 

We compare the DCClust with the following algorithms: 

1. The global 𝑘-means algorithm (GKM) [14]. 

2. The Multi-start modified global 𝑘 -means algorithm 

(MSMGKM) [15]. 

3. The version of the Algorithm 1 where the optimization 

algorithm is replaced by the DCA [4] (MS-DCA). 

All these algorithms are based on the incremental 

approach. The DCClust algorithm contains a special procedure 

to generate starting cluster centers (Step 3) which is described 

in detail in [6], [15]. To design the version of Algorithm 1 

with the DCA in Steps 4 and 5 the optimization algorithm is 

replaced by the DCA. 

IV. NUMERICAL RESULTS 

To test the DCClust algorithm and compare it with other 

three clustering algorithms numerical experiments with a 

number of real-world data sets have been carried out. 

Algorithms were implemented in Fortran 95 and compiled 

using the gfortran compiler. Computational results were 

obtained on a PC with the CPU Intel(R) Core(TM) i5-3470S 

2.90 GHz and RAM 8 GB. Three data sets have been used in 

numerical experiments. Their brief description is given in 

Table I. The detailed description can be found in [13]. All data 

sets contain only numeric features and they do not have 

missing values. 

We computed up to 25 clusters in all data sets. The CPU 

time used by algorithms is limited to 20 hours. Since all 

algorithms computes clusters incrementally we present results 

with the maximum number of clusters obtained by an 

algorithm during this time limit. Results for cluster function 

values found by different algorithms are presented in Table II. 

In this table we use the following notation: 

• k is the number of clusters; 

• 𝑓𝑏𝑒𝑠𝑡  (multiplied by the number shown after names of data 

sets) is the best known value of the cluster function (3) 

(multiplied by m) for the corresponding number of 

clusters; 

• 𝐸𝐴  is the error in % by an algorithm A which is calculated 

as follows: 

𝐸𝐴 =
𝑓̅ − 𝑓𝑏𝑒𝑠𝑡

𝑓𝑏𝑒𝑠𝑡

× 100% 

where 𝑓̅ is the value of the clustering function obtained by 

an algorithm A; 

• The sign “-” in tables shows that an algorithm failed to 

compute clusters in the given time frame. 

Results presented in Table II show that all four algorithms 

are able to find global or near global solutions to clustering 
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TABLE 2. CLUSTER FUNCTION VALUES OBTAINED BY 

ALGORITHMS 

k fbest 
EDCClu

st 

EMS−DC

A 

EMGK

M 
EGKM 

Gas Sensor Array Drift (×1013)  

2 79.11857 0.00 0.00 0.00 0.00 

3 5.02412 0.00 0.00 0.00 0.00 

5 3.22726 0.00 0.00 0.00 0.00 

10 1.65524 0.00 0.00 0.00 0.00 

12 1.40655 0.00 0.01 0.01 0.00 

15 1.13801 0.35 0.00 0.00 0.36 

20 0.87916 0.62 0.16 0.00 0.62 

25 0.72348 0.47 0.00 0.00 0.16 

Skin Segmentation (×109) 

2 1.32236 0.00 0.00 0.00 0.00 

3 0.89362 0.00 0.00 0.00 0.00 

5 0.50203 0.00 0.00 0.00 0.00 

10 0.25122 0.00 0.00 0.00 0.00 

12 0.21416 0.00 0.55 0.55 0.00 

15 0.16964 0.18 0.19 0.18 0.00 

20 0.12770 0.14 0.17 0.17 0.00 

25 0.10299 0.00 0.00 0.00 0.00 

3D Road Network (×106) 

2 49.13298 0.00 0.00 0.00 0.00 

3 22.77818 0.00 0.00 0.00 0.00 

5 8.82574 0.00 0.01 0.00 0.00 

10 2.56710 0.00 0.21 - - 

12 1.84976 0.00 0.05 - - 

15 1.27072 0.00 0.26 - - 

20 0.80872 0.00 0.73 - - 

25 0.60334 1.93 0.00 - - 

problems in large data sets, however the GKM and 

MSMGKM algorithms are not efficient for solving clustering 

problems within a given timeframe in data sets with hundreds 

of thousands of points. 

Figures 1(a)-1(c) illustrate dependence of the number of 

distance function evaluations (𝑁𝑑) on the number of clusters 

for four algorithms in all data sets. These figures demonstrate 

that the MS-MGKM algorithm requires the least number of 

distance function evaluations in two data sets. In the 3D Road 

Network data set this algorithm computed only 6 clusters 

within a 20 hours timeframe and the number 𝑁𝑑  is similar to 

that of by the MS-DCA and DCClust algorithms. For the 

GKM algorithm 𝑁𝑑  depends linearly on the number of 

clusters, however this algorithm requires significantly more 

distance function evaluations than other three algorithms. 

Comparison of the DCClust and the MS-DCA algorithms 

shows that the latter algorithm requires more distance function 

evaluations than the former algorithm. 

Figures 2(a)-2(c) illustrate dependence of the CPU time on 

the number of clusters for four algorithms in all data sets. It is 

obvious that the DCClust algorithm requires least CPU time 

among all four algorithms. 

V. CONCLUSION 

In this paper an algorithm for solving the minimum sumof-

squares clustering problems is designed using their DC 

representation. The algorithm is an incremental algorithm and 

computes clusters gradually starting from one cluster which

 

(a) 

 
(b) 

 
(c) 

Figure 1. The number of distance function calculations vs the number of 
clusters. 
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(b) 

 

 

(c) 

Figure 2. The CPU time vs the number of clusters. 

is the whole data set. The proposed algorithm is tested using 

real world data sets with the number of data points ranging 

from tens of thousands to hundreds of thousands and 

compared with other clustering algorithms. Results clearly 

demonstrate that the use of the DC representation of clustering 

problems allows one to significantly improve ability of 

incremental algorithms to solve clustering problems in very 

large data sets in a reasonable time. Furthermore, the use of 

nonsmooth optimization algorithms can increase this ability 

for even larger data sets. 
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