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I.  INTRODUCTION 

Contrary to cross section data, time series observations are 
ordered in time: the value of employment (minimum wage, 
inflation) in a given country at the year t  can depend on that 

indicator at the previous years 1t , ,2t , 1 [1–3]. The 

statistical properties of OLS estimators (estimators of ordinary 
least squares, OLS) as random variables are based on the 
assumption that samples are randomly drawn from the 
appropriate population. Because different random samples 
contain generally different values of dependent and 
independent variables (income, wage, education level, work 
experience), the OLS estimators, computed on various samples, 
would generally differ [4–6]. 

As the value of Dow Jones Industrial Average at the end of 
trading day on April 12, 2013, or the value of gross domestic 
product of Ukraine in 2013 are not foreknown, then those 
variables may be viewed as random variables. A sequence of 
random variables ordered in time is called a stochastic 
(random) process or a time series process. The dataset of time 
series is the realization (a possible outcome) of random process 
[7]. 

II. THE REQUIRED PROPERTIES 

The standard OLS conditions for cross section data, revised 
for finite (small) samples of time series (TS), assume the 
following properties [7]: 

TS1) model linearity in parameters; 

TS2) zero conditional mean of error variable; 

TS3) no perfect collinearity among variables; 

TS4) homoskedasticity of errors; 

TS5) no serial correlation among errors; 

TS6) normality of errors. 

The properties TS1)–TS3) give unbiasedness of OLS 
estimators of parameters; the properties TS4) and TS5) are 
necessary for computing the variances of OLS estimators; the 
property TS6) is necessary for statistical inference. The 
properties TS1)–TS5) are called the Gauss–Markov 
assumptions. 

 
The property TS1) means the stochastic process 

n
ttkttt yxxx 121 },,,,{   is described by some model linear in 

k
ii 0}{   

tktkttt uxxxy  22110 , (1) 

where: n  is the number of observations (time periods); ty  

is the value of explained (dependent) variable (regressand) at 

(time) period t ; n
ttu 1}{   is the sequence of measurement errors 

(disturbances); itx  is the value of explanatory (independent) 

variable (regressor) ix  at period t , ki ,,2,1  ; i  is 

estimated parameter; ki ,,1,0  . 

The model, accounting for the history 

ttttt uzzzy   221100 , (2) 

where ty  is the general fertility rate (number of newborn 

per 1000 women of childbearing age) at period t , tz  is the real 

monetary value (of the right ensured by law) of personal tax 
exemption (the tax value of giving a child) at period t , takes 

into account behavioral motivations and biological 
circumstances of decisions to have a child. The model (2) us 

reduced to the model (1) if itit zx  , 2,1,0i . 

The property TS2) requires that at any period the average 
value of error does not depend on the independent variables: 

0)|( XuE t  nt ,,2,1  ,  (3) 

where X  is the array consisting of n  rows 

),,,( 21 kxxx    and corresponding k  columns, 

n,,2,1  . This property means the error tu  at period t  is 

uncorrelated with each explanatory variable ix , ki ,,2,1  , 

at every period n,,2,1  . If tu  does not depend on X  and 

0)( tuE , then the property TS2) holds automatically. 
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At t  the relationship (3) implies the known for cross 

section data condition 

0),,,|( 21 ktttt xxxuE  . 

If this condition does not hold, then each variable itx  is 

called contemporaneously exogenous, ki ,,2,1  . This 

condition implies that tu  is uncorrelated with each explanatory 

variable itx : 

0),( itt xuCorr , ki ,,2,1  ; nt ,,2,1  . (4) 

The property (3) requires more than the equalities (4): 

0),( ist xuCorr ; 

 ki ,,2,1  ; nt ,,2,1  ; ns ,,2,1  .  (5) 

If the condition (5) does not hold, then the explanatory 

variables ix  are called strictly exogenous, ki ,,2,1  . The 

condition (4) is sufficient for proving consistency of the OLS 
estimators. The condition (5) is used for proving unbiasedness 
of the OLS estimators. 

For cross section demographic data, an explicit relation 

between the error tu  of person a  and the explanatory variable 

of another person b  in the sample is not stated because that 

error may refer to the person a  only and automatically does 

not depend on the explanatory variables of other persons, under 
random sampling (the standard OLS condition for cross section 
data). For time series data, random sampling is not required 
while the property TS2) is needed. 

The property TS2) is not satisfied when the unobservables 
(omitted variables and measurement errors in any regressors) 
correlate with some regressors at a certain period. In the simple 
static regression model 

ttt uzy  10   (6) 

the property TS2) postulates zero correlation of tu  with 

past and future values of independent variable z : 

0),( st zuCorr ; nt ,,2,1  ; ns ,,2,1  . 

Therefore the assumption TS2) rules out any lagged 
influence from z  to y  (if such an influence exists, then a 

distributed lag model should be estimated). Besides, the 
assumption TS2) excludes a possibility of influence from 
current changes in error u  to future changes in explanatory 

variable z , which in fact forbids any feedback from 
contemporary value of y  to future values of z . 

If in the model (6) ty  is the murder rate (the number of 

murders per 10000 people) in a given city at the year t , tz  is 

the number of policemen per capita in that city at the year t , 

then it may be supposed that tu  does not correlated with tz , 

,,1 tz 1z . At the same time it may be assumed the city 

changes the values of z , based upon the past values of y . As 

larger error tu  is associated with larger level of ty , then tu  

may correlate with 1tz , violating the condition TS2). For a 

distributed lag model, generalized the model (6), the similar 
considerations on violation the condition TS2) are remained. 

Contrary to possible correlation between tu  and 1tz , 

,,2 tz nz , a possible correlation between tu  and 1tz , 

,,2 tz 1z  is under control. 

The strictly exogenous explanatory variable z  does not 
react to the past of explained variable y : for instance, the 

amount of rainfall at any future year is not associated with the 
crops at current or past years. At the same time the labor input 
is chosen by the farmer who may account for the crop at 
previous year. Such policy variables, as expenditures on public 
welfare, growth in money supply, highway speed limits, are 
often influenced by the past values of explained variable. 

If explanatory variables are nonrandom or fixed in repeated 
samples, then the property TS2) holds true. However, in the 
time series observations, explanatory variables should be 
random. 

The property TS3) assumes in the sample (and therefore 
in the underlying time series process) no independent variable 
is constant or a perfect linear combination of other independent 
variables. As the similar property for cross section data, the 
property TS3) allows correlation of explanatory variables but 
not perfect correlation in the sample. 

Theorem 1. If the conditions TS1), TS2), TS3) hold true, 

then the OLS estimators i̂  are unbiased: 

iii EXE   )ˆ()|ˆ( , ki ,,1,0  . 

The proof of theorem 1 reproduces the proof of 
corresponding theorem for cross section data. The analysis of 
biasedness due to omitted variables reproduces the 
corresponding analysis for cross section data as well. 

The property TS3) in the truncated model (2) with finite 
distributed lags 

tttt uzzy  1100   (7) 

and independent variables tt zx 1 , 12  tt zx  rules out in 

the sample 1tx  is constant (the values of 1z , ,,2 z nz  are the 

same) or 2tx  is constant (the values of 0z , ,,1 z 1nz  are the 

same) and also excludes in the sample 1tx  is a perfect linear 

combination of 2tx  (if tbazt  , then 

bzbtbatbaz tt  )1(1  is an exact linear 

function of ).tz  

The property TS4) posits the variance )|( XuVar t  does 

not depend on X  and equals to )( tuVar , and )( tuVar  does 

not depend on nt ,,2,1   and equals to 2  
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(homoskedasticity of errors). If the property TS4) does not 

hold, then errors tu  are heteroskedastic. Under some 

conditions, testing for heteroskedasticity for cross section data 
is transferred to time series data. 

The property TS4) for the truncated model (1) 

tttt uxxy  22110 ,  (8) 

where ty  is the average rate of 3-month treasury bills (at 

the year t  in the USA), tx1  is inflation level (%), tx2  is the 

ratio (%) of budget deficit to gross domestic product (GDP), 

stands for the unobservables, affecting ty , have a constant 

variance over time. As the changes of economic policy 
variables influence on the variability of interest rates, then the 
property TS4) may be violated. The property TS4) will be 

violated if the interest rate volatility depends on tx1  or tx2 . 

The property TS5) claims no conditional serial correlation 
between errors at any different time periods: 

0)|,( XuuCorr st  st  . 

If the array X  is believed to be nonrandom, then the 

property TS5) has a form 

0),( st uuCorr  st  .   (9) 

When the relationship (9) is not satisfied, then errors tu  

undergo serial correlation (autocorrelation). If the error tu  is 

positive (the value of ty  in model (8) is high) and the average 

of next period error 1tu  is also positive (the value of 1ty  is 

also high), then 0),( 1 tt uuCorr  and the relationship (9) is 

not satisfied. 

The property TS5) does not eliminate temporal correlation 

for independent variable tx1  or independent variable tx2 . 

For cross section data the condition on absence of 

conditional serial correlation between errors tu , hu  at any 

different time periods t , h , because the random sampling 

assumption implies independence of errors tu , hu . 

Sometimes the Gauss–Markov properties TS1)–TS5) are 
satisfied for cross section applications, for which the random 
sampling assumption does not hold, if sample sizes are large in 
comparison with the population size. The property TS5) is not 
satisfied if t , s  in the relationship (8) are interpreted as cities 

instead of time periods. 

Theorem 2. Under the Gauss–Markov assumptions TS1)–
TS5), the following equality takes place: 

)1(
)|ˆ(

2

2

ii

i
RSST

XVar





 , ki ,,2,1  , 

where: iSST  is the total sum of squares 



n

t

itit xx

1

2)ˆ(  at 

explanatory variable ix ; 2
iR  is the R-squared from regression 

of ix  on the other independent variables 1x , ,2x , 1ix , 

,1ix , kx . 

The proof of theorem 2 reproduces the corresponding proof 
for cross section data. Time series data and cross section data 
have the same the reasons of large variances, including 
multicollinearity between independent variables. 

In the model (7) with finite distributed lags, the 

multicollinearity between explanatory variables tz , 1tz  might 

be a result of the nature of those variables: if }{ tz  is a 

sequence of unemployment levels, then those levels are 
changing slowly. 

Theorem 3. Under the Gauss–Markov assumptions TS1)–
TS5), the estimator 

df

SSR
2̂  

is an unbiased estimator of 2 , where the degress of 

freedom 1 kndf . 

Theorem 4. Under the Gauss–Markov assumptions TS1)–
TS5), the OLS estimators are the best linear unbiased 
estimators (BLUEs) conditional on X . 

The theorems 2–4 transfer the desirable properties of 
multiple linear regression from cross section data to finite 
samples of time series data. 

The property TS6) supposes that errors tu  are 

independent of X , are independently and identically 

distributed with mean 0 and variance 2  (belong to the class 

),0( 2N ). 

The property TS6) implies the properties TS3)–TS5). 

Theorem 5. Under the assumptions TS1), TS2), TS6), the 
condition central limit theorem, the OLS-estimators are 

normally distributed random variables conditional on X .For 
the OLS-estimators, each t-statistic has a t-distribution, and 
each F-statistic has F-distribution. Hence, the usual for cross 
section data construction of confidence intervals are valid for 
time series data. 

According to the theorem 5, estimating and hypothesis 
testing for cross section regressions are directly applied to time 
series regressions: t-statistic may be used for testing of 
statistical significance of individual explanatory variables, and 
F-statistic – for testing of their joint significance. Meanwhile, 
the assumptions TS2) and TS5) of classical linear model for 
time series data are more restrictive than the similar 
assumptions for cross section data. 
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