

The Third International Conference “Problems of Cybernetics and Informatics”, September 6-8,
2010, Baku, Azerbaijan. Section #7 “Numerical Methods and Computational Technology”

www.pci2010.science.az/7/26.pdf

341

ASYMPTOTIC PROPERTIES OF SOLUTIONS OF A SPECIAL TYPE
OF RECURRENCE RELATIONS

Valentina Bykova

Institute of Mathematics Siberian Federal University, Russia, Krasnoyarsk

bykvalen@mail.ru

The modern software industry requires development of special methods of analysis
algorithms. Analysis algorithms in the theory of complexity are traditionally performed in terms
of length of computational processes that generate algorithms. Computational complexity
of the algorithm is formally described by t (n), which is a function of time complexity. This
function represents the maximum number of elementary steps which requires the algorithm
to achieve results depending on n (n is length of input of algorithm). Typically the length
of the entrance of the algorithm is the size of the problem being solved [1]. In the analysis
algorithms have traditionally study the behavior of functions complexity as n→∞ [2 – 4].

There are two broad classes of algorithms: classes of iterative algorithms and of recursive
algorithms. Iterative algorithms are repeated many time the same actions. The structure
of the iterative algorithm is well described by algorithmic elements: "to follow the order",
"branching", "cycle". Analysis of complexity iterative algorithms is reduced to determining
the complexity these elements and the formation of the integral of the asymptotic evaluation [3].

Recursive algorithm is copying a whole in parts. For example transition from the problem
of size n to the same problem of smaller size. There are several important reasons that hinder
the wide application of recursion. First recursive algorithms are often more costly in terms
of time and memory than the iterative algorithms that solve the same problem. The complexity
of recursive algorithm is greatly influenced by the organization of recursion. Secondly
the analysis of the complexity of recursive algorithms is one of the most difficult problems
of the theory of computational complexity.

The main tool for investigating the complexity of recursive algorithms is the method
of recurrence relations. The idea of the method consists in constructing and solving
the recurrence equation for t(n) function of complexity algorithm. The solution found allows
you to get the O-estimates for t(n).

However it can be difficult since not are there general methods for solving recurrences
relations. We know the only methods for solving some classes of recurrences relations.
Nevertheless in many practical situations we find the way. For example relatively well resolved
recurrence relations which are characteristic for recursive algorithms of type "divide and
conquer" and additive reduction of the size of the problem by some constant. There are two
main theorems of recurrence relations. These theorems are a convenient mathematical tool
for analyzing the complexity of the two most common principles of organization of recursion.
Their use avoids tedious calculations; choose the least labor-intensive organization scheme
of recursion. In this paper we study the second of these theorems. This theorem was proved
by the author in [5]. We got new studies of this theorem and practical recommendations
on the organization of recursion additive to reduce the size of the problem. These results we
intend to present.

Initially we point out the characteristic features of recurrence relations for the two main
principles of organization of recursion. When recording a recurrence relation for t(n) function
should take into account the complexity of no recursive and recursive branch of the algorithm.
No recursive branch defines sets the initial conditions. Recursive branch defines itself
recurrence relation. The values of t(n) function to recursive algorithm are calculated
by the formula:

⎩
⎨
⎧

≥>++
≤≤

=
,0,

,0 ,
)(

0

0

nnttt
nnc

nt
usr

 (1)

The Third International Conference “Problems of Cybernetics and Informatics”, September 6-8,
2010, Baku, Azerbaijan. Section #7 “Numerical Methods and Computational Technology”

www.pci2010.science.az/7/26.pdf

342

where n is the parameter recursion, n0 is the size of the problem, in which the algorithm does not
depend on n, c ≥ 0 is the complexity of no recursive branch (a constant value), ts is have time
to go to the subproblems, tr is the complexity of recursive branches (time for computing
subproblems), tu is the time integration of solutions which were obtained of subproblems.

In principle "divide and conquer" problem which has size n divided into subproblems size
n / k, where k > 1 is the whole constant. In this case the relation (1) takes the form:

⎩
⎨
⎧

≥>+
=

=
.0),()/()(

, ,
)(

0

0

nnnBkntnA
nnc

nt (2)

Here A(n), B(n) are nonnegative, monotonically increasing, real-valued functions of n ∈ Z+ (Z+
is the set of positive integers). These functions characterize the cost of a recursive transition.
Since k is a constant then the transformation g(n) = n / k the size of original problem in the size
of subproblems is linear in n. Obviously the relation (2) uniquely defines the function t(n) only
for n = 0 and n = km, m ∈ Z+.

For recursive algorithms, organized by the additive reduce of the original problem size n
by some constant k ≥ 1 equation (1) reduces to:

⎩
⎨
⎧

≥>+−
≤≤

=
,0),()()(

,0 ,
)(

0

0

nnnBkntnA
nnc

nt (3)

where A(n), B(n) have the same meaning as in (2). In this case the function g(n) = n – k also
determines the linear transformation of the size of the original problem in size subproblems and
recurrence relation (3) uniquely defines a function t(n) only if n = km, m ∈ Z+.

Solve the equation (2), (3) in general is not possible, because they are too general
appearance. Meanwhile in the particular case when A(n) = a and B(n) = bnτ, where a, b, τ
are positive constants the type of solutions of (2), (3) define the two main theorems.
The constant a is interpreted as a number of subproblems generated by the recursive branch
of the algorithm and a power function bnτ defines complexity recursive of the transition.

The first fundamental theorem to recurrence relations proved J. Bentley, D. Haken and
J. Saxe in 1980 [2, 3]. This theorem gives the solution of recurrence relation which
is characteristic of recursion such as "divide and conquer".

Theorem 1 Consider the recurrence relation

⎩
⎨
⎧

>+
=

=
,1,)/(

,1 ,
)(τ nbnknat

nc
nt

where а > 0, k > 1 are integer constants and b ≥ 0, c ≥ 0, τ ≥ 0 are real constants. Then
for n = km, m ∈ Z+ solution of the given ratio is the function:

⎪⎩

⎪
⎨
⎧

≠
−
−

+

=+
= . ,

1)/(
1)/(

, ,
)(

τ

τ
τ

ττ

τ
m

mm

mm

m

ka
ka

kakbca

kamkbca
kt

Under the assumptions of Theorem 1 when n→∞ and any b > 0 and c ≥ 0 are correct
estimates:

⎪
⎩

⎪
⎨

⎧

>
<
=

=
.),(
,),(
,),log(

)(
τlog

ττ

ττ

kanO
kanO
kannO

nt
a

k

k

 (4)

When b = 0 and c > 0, is always correct estimate:
).()()(loglog an kk nOaOnt == (5)

All estimates (4), (5) show a polynomial order of increasing function t(n) for any value
of t(1) = с ≥ 0. Consequently the recursion type of "divide and conquer" always leads
to polynomial algorithms. In addition, the computational complexity is clearly dependent on
the number of subproblems and the size of the subproblems: if a more balanced split the task
into subtasks, then the recursive algorithm will have a better (lower) estimate of complexity.

The Third International Conference “Problems of Cybernetics and Informatics”, September 6-8,
2010, Baku, Azerbaijan. Section #7 “Numerical Methods and Computational Technology”

www.pci2010.science.az/7/26.pdf

343

The second fundamental theorem of recurrence relations shows estimates for the solution
of recurrent relations, which is characteristic for recursion with an additive reduction of the size
of the problem by some constant k ≥ 1. For example such relationships arise in recursive
implementation of the method of dynamic programming.

Theorem 2 [5] Consider the recurrence relation

⎩
⎨
⎧

≥+−
−≤≤

=
,,)(

,10,
)(

knnbknta
knc

nt τ
 (6)

where а > 0, k ≥ 1 are integer constants and b ≥ 0, c ≥ 0, τ ≥ 0 are real constants. Then
for n = km, m ∈ Z+ are correct inequalities:

,1,)(1τ1τ =+≤≤+ +− an
k
bcntnbkc (7)

.1,
1

1)(
1

1 /
τ/

/
τ/ ≠

−
−

+≤≤
−
−

+ a
a

abncant
a

abkca
kn

kn
kn

kn (8)

Formula (7) (8) do not give an exact solution to the recurrence relation (6) and hence the
exact asymptotic estimates. They only define the upper and lower boundaries. In this sense
Theorem 2 is weaker than the first main theorem. Nevertheless in some special cases you can
get exact solutions and evaluation. This is evidenced by the following investigation.

Consequence 1 Under the assumptions of Theorem 2 for τ = 0 the solution of recurrence
relation (6) is a function:

⎪
⎩

⎪
⎨

⎧

≠
−
−

+

=+
=

.1 ,
1

1

,1 ,
)(/

/ a
a

abca

an
k
bc

nt kn
kn

 (9)

Consequence 2 For τ = 0, с ≥ 0 and n→∞ for the recurrence relation (6) are correct
asymptotic estimates:

⎩
⎨
⎧

>≠
>=

=
.0,1),(

,0,1),(
)(/ baaO

banO
nt kn

 (10)

In particular, when τ = 0, а = 1 and b = 0 is always t(n) = O(1).
Consequence 3 For τ ≥ 0, а = 1, с ≥ 0, b > 0 and n→∞ for the recurrence relation

(6) is correct asymptotic estimate:
).()(1τ += nOnt (11)

Consequence 4 For а > 1, с ≥ 0, b > 0 and positive integers τ for the recurrence relation
(6) is correct asymptotic estimate:

).()(/ knanOnt τ= (12)
From (9) − (12) can make an important practical conclusion: recursive algorithm which

creates an additive reduction in the size of the problem to some constant can be a polynomial
and exponential complexity.

If B(n) = bnτ and а ≠ 1, b > 0 and с ≥ 0 (or b ≥ 0 and с > 0) then algorithm will
be exponential complexity always. What do these requirements? How should organize
a recursive algorithm to achieve polynomial complexity? For answers to these questions
is necessary to recall the meaning of the constants of (6). Constant а determines the number
of subproblems of size n – k. Integer values а (in Theorem 2) is only needed for this
interpretation. Constant b and τ describe the complexity of recursive transition from n to n – k.
The constant с characterize the time costs required to directly address the problem, when its size
is extremely small.

For real algorithms, there are always some costs for the organization of recursion i.e.
b > 0 and с > 0. If these costs do not depend on n then τ = 0. At τ = 0, а = 1 by Consequence 2
recursive algorithm has linear complexity. When τ ≥ 0, a = 1 and n→∞ by Consequence 3
for t(n) true the estimate t(n) = O(nτ + 1). So it is always at a = 1 a recursive algorithm organized
by reducing the size of the problem to some constant is a polynomial. When а ≠ 1 and

The Third International Conference “Problems of Cybernetics and Informatics”, September 6-8,
2010, Baku, Azerbaijan. Section #7 “Numerical Methods and Computational Technology”

www.pci2010.science.az/7/26.pdf

344

the positive integral values of the constants τ (Consequence 4) is correct asymptotic estimate
t(n) = O(a n / k). In general, when а ≠ 1 and any τ ≥ 0 and a fixed value of 1 ≤ k < n inequality (8)
indicates that the function t(n) grows no faster than O(nτa n / k).

Now we investigate the lower boundary of the growth rate of the function t(n). We put
in the ratio (6) b = 0. Then the recurrence relation (6) becomes uniform

⎩
⎨
⎧

≥−
−≤≤

=
.),(

,10,
)(

knknta
knc

nt (13)

Inequality (7), (8) becomes an equality t0(n) = a n / kc. This equation can be interpreted
as a general solution of homogeneous equation (13). If а ≠ 1 then solution t0(n) = a n / kc always
has an exponential order of growth. According to (8) when а ≠ 1 the particular solution t*(n)
for recurrence relation (6) is a function that for large n grows no faster than

).(
1

1 /τ
/

τ kn
kn

anO
a

abn =
−
− (14)

According to (14) for а ≠ 1 the function t(n) = t0(n) + t*(n) grows no slower than t0(n) = a n / kc
and no faster than O(nτa n / k).

In practical terms, this means if the number of subproblems at each recursive step greater
than unity (а ≠ 1), then recursive algorithm organized by additive reduction the size
of the problem always has exponential complexity. In this case, improvement of procedures
for splitting and combining subproblems cannot change the class of complexity. Cause
an exponential complexity when а ≠ 1 lies in the appearance at each step of recursion
overlapping subproblems.

All results are obtained in this work are extremely important for software developers and
experts in the field of theoretical computer science. These results allow us to correctly use
a recursive approach in programming. The general practical advice is this: to get the recursive
algorithms of polynomial complexity is necessary, first of all, take care of the balance
of subproblems, at each step of recursion create new independent subproblems, effectively carry
out the procedure for partitioning and consolidation problems.

References

1. D.B. Yudin, A.D. Yudin, Mathematic measures the Complexity (Moscow, Russia, 2009).
2. R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer

Science (Addison-Wesley Publishing Company, 1994).
3. S. Baase, A. Gelder, Computer Algorithms: introduction to Design and Analysis (Addison-

Wesley Publishing Company, 2000).
4. V.V. Bykova, Recognition Method of Algorithms Classes on the Basis of Asymptotics

for Elasticity Functions Complexity, Journal of Siberian Federal University, Mathematics &
Physics. 2(1), 2009, 48-62 (in Russian).

5. V.V. Bykova, Mathematical methods of analysis of recursive algorithms, Journal
of Siberian Federal University, Mathematics & Physics. 1(3), 2008, 236-246 (in Russian).

