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The modern software industry requires development of special methods of analysis 
algorithms. Analysis algorithms in the theory of complexity are traditionally performed in terms 
of length of computational processes that generate algorithms. Computational complexity 
of the algorithm is formally described by t (n), which is a function of time complexity. This 
function represents the maximum number of elementary steps which requires the algorithm 
to achieve results depending on n (n is length of input of algorithm). Typically the length 
of the entrance of the algorithm is the size of the problem being solved [1]. In the analysis 
algorithms have traditionally study the behavior of functions complexity as n→∞ [2 – 4]. 

There are two broad classes of algorithms: classes of iterative algorithms and of recursive 
algorithms. Iterative algorithms are repeated many time the same actions. The structure 
of the iterative algorithm is well described by algorithmic elements: "to follow the order", 
"branching", "cycle". Analysis of complexity iterative algorithms is reduced to determining 
the complexity these elements and the formation of the integral of the asymptotic evaluation [3]. 

Recursive algorithm is copying a whole in parts. For example transition from the problem 
of size n to the same problem of smaller size. There are several important reasons that hinder 
the wide application of recursion. First recursive algorithms are often more costly in terms 
of time and memory than the iterative algorithms that solve the same problem. The complexity 
of recursive algorithm is greatly influenced by the organization of recursion. Secondly 
the analysis of the complexity of recursive algorithms is one of the most difficult problems 
of the theory of computational complexity. 

The main tool for investigating the complexity of recursive algorithms is the method 
of recurrence relations. The idea of the method consists in constructing and solving 
the recurrence equation for t(n) function of complexity algorithm. The solution found allows 
you to get the O-estimates for t(n).  

However it can be difficult since not are there general methods for solving recurrences 
relations. We know the only methods for solving some classes of recurrences relations. 
Nevertheless in many practical situations we find the way. For example relatively well resolved 
recurrence relations which are characteristic for recursive algorithms of type "divide and 
conquer" and additive reduction of the size of the problem by some constant.  There are two 
main theorems of recurrence relations. These theorems are a convenient mathematical tool 
for analyzing the complexity of the two most common principles of organization of recursion. 
Their use avoids tedious calculations; choose the least labor-intensive organization scheme 
of recursion. In this paper we study the second of these theorems. This theorem was proved 
by the author in [5]. We got new studies of this theorem and practical recommendations 
on the organization of recursion additive to reduce the size of the problem. These results we 
intend to present. 

Initially we point out the characteristic features of recurrence relations for the two main 
principles of organization of recursion. When recording a recurrence relation for t(n) function 
should take into account the complexity of no recursive and recursive branch of the algorithm. 
No recursive branch defines sets the initial conditions. Recursive branch defines itself 
recurrence relation. The values of t(n) function to recursive algorithm are calculated 
by the formula: 
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where n is the parameter recursion, n0 is the size of the problem, in which the algorithm does not 
depend on n, c ≥ 0 is the complexity of no recursive branch (a constant value), ts is have time 
to go to the subproblems, tr is the complexity of recursive branches (time for computing 
subproblems), tu is the time integration of solutions which were obtained of subproblems. 

In principle "divide and conquer" problem which has size n divided into subproblems size 
n / k, where k > 1 is the whole constant. In this case the relation (1) takes the form: 
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Here A(n), B(n) are nonnegative, monotonically increasing, real-valued functions of n ∈ Z+ (Z+ 
is the set of positive integers). These functions characterize the cost of a recursive transition. 
Since k is a constant then the transformation g(n) = n / k the size of original problem in the size 
of subproblems is linear in n. Obviously the relation (2) uniquely defines the function t(n) only 
for n = 0 and n = km, m ∈ Z+. 

For recursive algorithms, organized by the additive reduce of the original problem size n 
by some constant k ≥ 1 equation (1) reduces to: 
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where A(n), B(n) have the same meaning as in (2). In this case the function g(n) = n – k also 
determines the linear transformation of the size of the original problem in size subproblems and 
recurrence relation (3) uniquely defines a function t(n) only if n = km, m ∈ Z+.  

Solve the equation (2), (3) in general is not possible, because they are too general 
appearance. Meanwhile in the particular case when A(n) = a and B(n) = bnτ, where a, b, τ 
are positive constants the type of solutions of (2), (3) define the two main theorems. 
The constant a is interpreted as a number of subproblems generated by the recursive branch 
of the algorithm and a power function bnτ defines complexity recursive of the transition.  

The first fundamental theorem to recurrence relations proved J. Bentley, D. Haken and 
J. Saxe in 1980 [2, 3]. This theorem gives the solution of recurrence relation which 
is characteristic of recursion such as "divide and conquer".  

Theorem 1 Consider the recurrence relation 
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where а > 0, k > 1 are integer constants and b ≥ 0, c ≥ 0, τ ≥ 0 are real constants. Then 
for n = km, m ∈ Z+ solution of the given ratio is the function:  
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Under the assumptions of Theorem 1 when n→∞ and any b > 0 and c ≥ 0 are correct 
estimates:  
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When b = 0 and c > 0, is always correct estimate:  
).()()( loglog an kk nOaOnt ==                                              (5) 

All estimates (4), (5) show a polynomial order of increasing function t(n) for any value 
of t(1) = с ≥ 0. Consequently the recursion type of "divide and conquer" always leads 
to polynomial algorithms. In addition, the computational complexity is clearly dependent on 
the number of subproblems and the size of the subproblems: if a more balanced split the task 
into subtasks, then the recursive algorithm will have a better (lower) estimate of complexity.  
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The second fundamental theorem of recurrence relations shows estimates for the solution 
of recurrent relations, which is characteristic for recursion with an additive reduction of the size 
of the problem by some constant k ≥ 1. For example such relationships arise in recursive 
implementation of the method of dynamic programming. 

Theorem 2 [5] Consider the recurrence relation 
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where а > 0, k ≥ 1 are integer constants and b ≥ 0, c ≥ 0, τ ≥ 0 are real constants. Then 
for n = km, m ∈ Z+ are correct inequalities:  
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Formula (7) (8) do not give an exact solution to the recurrence relation (6) and hence the 
exact asymptotic estimates. They only define the upper and lower boundaries. In this sense 
Theorem 2 is weaker than the first main theorem. Nevertheless in some special cases you can 
get exact solutions and evaluation. This is evidenced by the following investigation.  

Consequence 1 Under the assumptions of Theorem 2 for τ = 0 the solution of recurrence 
relation (6) is a function:   
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Consequence 2 For τ = 0, с ≥ 0 and n→∞ for the recurrence relation (6) are correct 
asymptotic estimates:     
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In particular, when τ = 0, а = 1 and b = 0 is always t(n) = O(1).  
Consequence 3 For τ ≥ 0, а = 1, с ≥ 0, b > 0 and n→∞ for the recurrence relation 

(6) is correct asymptotic estimate:  
).()( 1τ += nOnt                                                            (11) 

Consequence 4 For а > 1, с ≥ 0, b > 0 and positive integers τ for the recurrence relation 
(6) is correct asymptotic estimate:     

).()( / knanOnt τ=                                                        (12) 
From (9) − (12) can make an important practical conclusion: recursive algorithm which 

creates an additive reduction in the size of the problem to some constant can be a polynomial 
and exponential complexity. 

If B(n) = bnτ and а ≠ 1, b > 0 and с ≥ 0 (or b ≥ 0 and с > 0) then algorithm will 
be exponential complexity always. What do these requirements? How should organize 
a recursive algorithm to achieve polynomial complexity? For answers to these questions 
is necessary to recall the meaning of the constants of (6). Constant а determines the number 
of subproblems of size n – k. Integer values а (in Theorem 2) is only needed for this 
interpretation. Constant b and τ describe the complexity of recursive transition from n to n – k. 
The constant с characterize the time costs required to directly address the problem, when its size 
is extremely small.  

For real algorithms, there are always some costs for the organization of recursion i.e. 
b > 0 and с > 0. If these costs do not depend on n then τ = 0. At τ = 0, а = 1 by Consequence 2 
recursive algorithm has linear complexity. When τ ≥ 0, a = 1 and n→∞ by Consequence 3 
for t(n) true the estimate t(n) = O(nτ + 1). So it is always at a = 1 a recursive algorithm organized 
by reducing the size of the problem to some constant is a polynomial. When а ≠ 1 and 
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the positive integral values of the constants τ (Consequence 4) is correct asymptotic estimate 
t(n) = O(a n / k). In general, when а ≠ 1 and any τ ≥ 0 and a fixed value of 1 ≤ k < n inequality (8) 
indicates that the function t(n) grows no faster than O(nτa n / k).  

Now we investigate the lower boundary of the growth rate of the function t(n). We put 
in the ratio (6) b = 0. Then the recurrence relation (6) becomes uniform   
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Inequality (7), (8) becomes an equality t0(n) = a n / kc. This equation can be interpreted 
as a general solution of homogeneous equation (13). If а ≠ 1 then solution t0(n) = a n / kc always 
has an exponential order of growth. According to (8) when а ≠ 1 the particular solution t*(n) 
for recurrence relation (6) is a function that for large n grows no faster than    
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According to (14) for а ≠ 1 the function t(n) = t0(n) + t*(n) grows no slower than t0(n) = a n / kc 
and no faster than O(nτa n / k).  

In practical terms, this means if the number of subproblems at each recursive step greater 
than unity (а ≠ 1), then recursive algorithm organized by additive reduction the size 
of the problem always has exponential complexity.  In this case, improvement of procedures 
for splitting and combining subproblems cannot change the class of complexity. Cause 
an exponential complexity when а ≠ 1 lies in the appearance at each step of recursion 
overlapping subproblems. 

All results are obtained in this work are extremely important for software developers and 
experts in the field of theoretical computer science. These results allow us to correctly use 
a recursive approach in programming. The general practical advice is this: to get the recursive 
algorithms of polynomial complexity is necessary, first of all, take care of the balance 
of subproblems, at each step of recursion create new independent subproblems, effectively carry 
out the procedure for partitioning and consolidation problems.  
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