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From the general theory of integer functions, it is well-known that many properties of 
them directly depend on the corresponding sequence properties of these functions’ zeros. For 
instance, an indicator of the convergence of integer functions’ zero sequence does not exceed 
the order of this function; the upper density of zero sequence does not exceed its type, etc. [1].  
These properties lie in the basis of construction of integer functions according to given values at 
given points. 

 Let’s note that in the case of integer periodic functions (with the period of 2π ), it is 
sufficient to set the points at the band  ( ){ }∏ <≤∈= π 2 Re0: zCz  (please refer to [2], [3]). 
Then, there occurs a natural problem of learning the properties of sequence of the following 
type: { } ∏ =∈=Λ ,...2,1,, ккк λλ  and a set of the types { }n2π+Λ , n ,2,1,0 ±±= . . .  

The present paper is dedicated to this problem.  
 
 Sets Λ and Ω . 
 
 Let’s consider a sequence of complex numbers 

{ } ( ) ∞=≤≤<≤==Λ
∞→ kк к λλλπλλ

k21k lim...,,2Re0...,,2,1: . 

Let the number 0≥τ  be an indicator of convergence of the sequence ,Λ i.e. 
( )( )
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where ( )rn  is a number of members of the sequence Λ , fallen into the circle rz ≤ . 
 Let’s indicate the upper density of the sequence Λ  through Δ , 
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Along with this sequence, let’s consider the set  Ω ={ },n2π+Λ  ...2,1,0,n ±±=   Let’s 

indicate a convergence indicator through q , and the upper density of this set through 1Δ . 
Therefore 
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where  ( )rΝ  is a number of members of the set Ω  fallen into the circle rz ≤ . Then the 

following theorem is true: 
Theorem 1. The numbers τ and q are connected by the ratio of q =τ +1. 
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Proof. Let’s consider the circle rz ≤ . Let ( )rn  be a number of members of the sequence 

,Λ  and ( )rΝ  be a number of members of the set Ω  fallen into the circle rz ≤ . 

Let [ ] m=πr/2 . Then ,  ( )122 +≤≤ mrm ππ . It’s easy to see that the following 
inequality is valid: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ππππ 2222222122r rnrrnrnmrnmrn +≤+=+≤Ν . 

Let   2r/R =  and [ ] l=πR/2 . It is obvious that   
 
( ) ( ) ( )RRnlRnr 222 ≥≥Ν π  .  

 

Further, having united the values for ( )rΝ , we get 
 

( ) ( ) ( )( )π22Rn2 +≤Ν≤ rrnrR .    (1.1) 
 
It is obvious that 
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If we move to the limit with ∞→r  in the last inequalities, then we can get the following 

desired ratio 
 

1q1 +≤≤+ ττ . 
 
The Theorem 1 is proved. 
 
The following statement shows a relation between the upper density of the sequence Λ  

and the upper density of the set Ω . 
Theorem 2. The numbers Δ  and 1Δ  satisfy the following inequalities 
 

( ) Δ≤Δ≤Δ
−

22 1
1 τ

. 
 
Proof. Let ( )rn  be a number of members of the sequenceΛ  and ( )rΝ  - a number of 

members of the set Ω  fallen into the circle rz ≤ , as in the Proof of the Theorem 1. The 

numbers ( )rn  and ( )rΝ  satisfy the inequalities (1.1). Having divided all the parts (1.1) to  rq , 
we get the following: 
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Then, moving to the limit with ∞→r  in the last inequalities, we get the following 
desired inequalities. 

Note. From the Theorem 2 it follows that the numbers Δ  and 1Δ either turn into zero at 
the same time, equal to infinity or are finite number. 

Example. Let { }ik=Λ , . . .  2,1, ,0 ±±=k . Then Ω ={ }n2 ik π+ , . . .  2,1, ,0n, ±±=k  It 
is obvious that ,1=τ  .2=Δ  According to the Theorem 1 and 2, we get 2=q  and .4  2 1 ≤Δ≤  

 Let’s consider the sequence ( ){ }kλIm=Λ′  along with the sequence { }kλ=Λ . Let the 
number τ ′  be an indicator of the convergence of the sequenceΛ′  and the number Δ′  be the 
upper density of this sequence. 

Suggestion. The sequences Λ  and Λ′  have the following property: Δ′=Δ′= ,ττ . 
Indeed, according to the definition 
     

k
k

k
λ

τ
ln
lnlim

____

∞→
= . 

But on the other hand, 
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For the upper density we also get 
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Therefore, the convergence indicator and the upper density of the sequence Λ  can be 

calculated through the following formulae 
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Theorem  3.  The sequence   { }ls ,  where 
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converges for every integer   .1≥m   

Proof.  Let .1=m  For every integer  1>n , we have 
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Further, we get 
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Therefore, 
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It is obvious that the limit of the latter exists and is finite. 
 Now, let .1>m  In this case, the validity of the Lemma caused by the evidence showing 

the series 
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absolutely converges. The Theorem 3 is proved. The following Lemma is valid: 
Lemma 1.  The series         
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converge for every integer  .1>m  
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