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In the present study, the vortices nucleation (singular solution) of vortex in external 

magnetic field in the framework of a two-band model two-band GL equations presented.  Firstly 
we will drive time-dependent GL equations for two-band superconductors. Secondly we apply 
these equations for numerical modeling for vortex nucleation in the case thin superconducting 
film of two-band superconductor MgB2   with perpendicular external magnetic field.  We could 
use the modified forward Euler method for numerical experiments. Finally, a conclusion 
remarks will be made.   

Time-dependent equations in two-band Ginzburg-Landau theory can be obtained from 
expession for free energy functional [1-4] in analogical way to [5]: 

1 1 *
1

2( )e Fi
t

δφ
δ

∂
Γ + Ψ = −

∂ Ψh
, 

2 2 *
2

2( )e Fi
t

δφ
δ

∂
Γ + Ψ = −

∂ Ψh
,                                                              (1) 

                                       
1( )
2n

A F
t A

δσ φ
δ

∂
+∇ = −

∂

r

r  

Here we use notations similar to [5].  In Eqs. (6)  ϕ  means electrical scalar potential , 1,2Γ  -

relaxation time of order  parameters, nσ -conductivity of sample in two-band case, F denotes 
free energy functional of two-band superconductors [1-4] .  Choosing corresponding gauge 
invariance we can eliminate scalar potential from system of equations  (1) [5].  Under such 
calibration and magnetic field in form, ),0,0( HH =

r
 without any restriction of generality, 

time-dependent equations in two-band Ginzburg-Landau theory can be  written as 
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where mi are the masses of electrons belonging to different bands (i = 1, 2); αi = γi(T – Tci) are 
the quantities linearly dependent on the temperature; β and γi are constant coefficients; ε and ε1 
describe the interaction between the band order parameters and their gradients, respectively; H 
is the external magnetic field; and Φ0 is the magnetic flux quantum. In Eqs. (2,3.4),  the order 
parameters are assumed to be slowly varying in space.  

In Eqs. (2-4) was introduced also )(2,1 rrφ  phase of order parameters 

)exp()( 2,12,12,1 φir Ψ=Ψ
r , 

2
2,12,1 2)( Ψ=Tn -density of superconducting electrons in different 

bands, expressions for whichs are presented in [16–19] with  so-called natural boundary 
conditions  
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First two conditions correspond to absence of supercurrent through boundary of two-band 
superconductor, third conditions correspond  to the contiunity of  normal component of 
magnetic field to the boundary superconductor-vacuum.  

 We consider a finite homogeneous superconducting film of uniform thickness, subject to a 
constant magnetic field.  We also consider that the superconductor is rectangular in shape. In 
this case our two-band GL model becomes two-dimensional. The order parameters 1Ψ  and 2Ψ  
varies in the plane of the film, and vector potential A   has only two nonzero components, which 
lie in the plane of the film. Therefore, we identify the compuational domain of the 
superconductor with a rectangular region  2Ω∈� , denoting the Cartesian coordinates by x and 
y, and the x- and y- components of the vector potential by A(x,y) and B(x,y), recpectively.   
Before modeling we use so-called bond variables [7] for the discretization of time-dependent 
two-band G-L equations 
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Such variables make obtained discretized equations gauge-invariant. For spatially discetization 
we use forward Euler method [7].  In this method we begin  with partitioning the computational 
domain 0, 0,xp ypN N⎡ ⎤ ⎡ ⎤Ω = ×⎣ ⎦ ⎣ ⎦  into two subdomains, denoted by 2nΩ  and 2 1n+Ω  such that  

     
                           2 2n i j n+ =

Ω = Ω  and 2 1 2 1n i j n+ + = +
Ω = Ω                                       (10) 

 
for 0,.....; , 0,.....;xp ypi N j N= = , where 1xp xN N= + , 1yp yN N= + . In calculations we 
could  use two different  approach. The first approach (zero-field –cooled)  is assume that 
sample that has is initially in a perfect superconducting state  is cooled  to a temperature   below 
the critical Tc  in the absence of applied magnetic field, and then  a magnetic field of an 
appropriate strength is suddenly turned out.  The second approach (field-cooled) is to assume 
that a sample that is cooled to a temperature  at or above the critical temperature is in a normal 
state under magnetic field of appropriate strength, and then the temperature  is suddenly 
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decreased  below the critical temperature.  
For numerical calculations in two-band Ginzburg-Landau theory we assume that the 

size of superconducting film is λλ 4040 × , where λ  London  penetration depth of external 
magnetic field on superconductor [1-4]. Expressions for 0)2,1(Ψ , and for thermodynamic 
magnetic field Hc are also  presented in [1–4]. The calculations were performed for the 

following values of parameters: Tc = 40 K; Tc1 =20.0 K; Tc2 = 10 K,
2
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. This parameters was used for the calculation another physical 

properties of  two-band superconductor MgB2 [1-4]. 
For solving of corresponding  discretized GL equations  we will use method of adaptive 

grid [7]. We assume that the sample, which is initially in a perfect superconducting state, is 
cooled through Tc in the absence of applied magnetic field, and then a magnetic field  of an 
appropriate strenght is suddenly turned out.  Mathematically it means that, the initial state is 
achieved by letting    
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We present a contour plot of superconducting electrons. Ginzburg-Landau parameter for sample 
is the 5κ = . We can observe a partial hexagonal pattern, yet we do not observe the physically 
exact hexagonal pattern, as expected of homogeneous samples with uniform thickness.  

Secondly we simulate the field cooled case. In 0 0( , )x y a temperature at or above the 
critical temperature, is in a normal state under a magnetic field of appropriate strenght, and then 
the temperature is suddenly reduced to below Tc. In matematical denotes, the initial states is 
achieved by letting  
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where 1,2c  is a small constant representing the magnitude of the seed, and   0 0( , )x y  is the 
location of a seed in the sample.  We can conclude that, the result vortex pattern depends upon 
where and how many seeds are placed into the sample. Existence of Meissner state is shown by 
numerical calcutions using both (zero-field-cooled and field cooled) approachs. It means that at 
fixed Ginzburg-Landau parameter κ  and external magnetic field 1cHH <   no nucleation of 
vortexes of external magnetic field. 

As shown in [8] structure of magnetic field in section of vortex in two-band 
superconductor differs from single-band superconductor. Nonsymmetric angular magnetic field 
distriburion in vortex change their interaction force between them and total energy of 
superconductor with such vortexes differs from single band one. In high density vortex pattern 
effects of influence of nonsymmetric angular dependence becomes crusial. Detail analysis of 
influence of asymmetric character of sectional magnetic field distribution on the  parameters of  
hexagonal vortex pattern  is the object of future investigations.  

 
Thus, in this study we obtain time-dependent Ginzburg-Landau equations taking into 

account two-band character of the superconducting state, which was originally developed by 
Schmid for single band superconductors. Furthermore, we perform numerical modeling of 
vortex nucleation in external magnetic field   in two-band superconducting films MgB2 using 
two-band Ginzburg-Landau  theory. It was shown that the vortex configuration in the mixed 
state depends upon initial state of the sample and that the system does not seem to yield 
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hexagonal pattern for finite size homogeneous samples of uniform thickness with the natural 
boundary conditions.  On the other hand, the time-dependent two-band GL equations leads to 
the expected hexagonal pattern, i.e. global minimizer of the energy functional. 
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