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When we speak on numerical solution of the initial value problem for higher order 

differential equations it is assumed that they may be reduced to the initial problem for a system 
of first order differential equations by means of change of variables and then using a wide store 
of numerical methods for solving first order ordinary differential equations to solve the initial 
value problem for received system. However, the methods specially constructed for solving 
higher order differential equations are more effective. Here, for illustration that we constructed 
one method and showed its efficiency. 

Introduction. 
We investigate numerical solution of the initial value problem for second order 

nonlinear ordinary differential equations in the following form:  
                             ( ),,, yyxfy ′=′′    ( ) 00 yxy = ,    ( ) 00 yxy ′=′ .                                       (1) 

Suppose that problem (1) has a unique continuous solution determined on the segment 
],[ 0 Xx . Finding its approximate values, by means of the constant step size h<0 , we partition 

the segment ],[ 0 Xx into N equal parts. We determine the partitioning points as mhxxm += 0 , 
and denote the approximate values of the solution of problem (1) at the point mx  by my  
( Nm ,...,2,1,0= ). 

The scientists of the world study the solution of ordinary differential equations from 
Neuton’s time. Many well known scientists beginning from Euler devoted their works to 
investigation of numerical solutions to initial value problem of the first order ordinary 
differential equations and applied the obtained result to the solution of problem (1) by means of 
the system of first order differential equations. While studying the orbit of celestial bodies, some 
scientists obtained problem (1) wherein the function ),,( zyxf is independent of the argument 
z , i.e. ( ) ( )yxFzyxf ,,, =  and they constructed a method that was make effective than the 
known ones. The Stoermer’s method is the more popular among them. 

We can write Stoermer’s generalized method in the following form [see (1)-(4)]  
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where the coefficients ii βα ′′,   ( )ki ,...,2,1,0=  are some real numbers, moreover 0≠′kα  , and 
the integer valued quantity k is called an order of difference method. Approximate values of the 
solution of the initial problem at the point mx  ( )Ν= ,...,1,0m  are denoted by my . 

Notice that if we reduce problem (1) to the system of first order equations and get the 
following method  
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for its solution, as a result we’ll get a system of two finite-difference methods. 
And of we compare the obtained one with Stermer’s method, we see that the use of one 

finite-difference method is best than to use their systems. This advantage of Stermer’s method 
shows itself more in using implicit schemes. However, method (2) also has some lacks that 
promoted to construct another method for solving special type ordinary differential equations 
(both hybrid and forward jumping types). 
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Here, for numerical solution of problem (1) we suggest a multi-step method with three 
derivatives that is researched in the following item. 

1. Multi-step method with third derivative. 
   As is known, the finite-difference method (3) that is already classic, was investigated well by 
many authors (see [1]-[5]) as a numerical method for solving the initial problem for ordinary 
differential equations. One of the well investigated multi-step methods with constant 
coefficients is the following method 
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Here, the coefficients iii γβα ˆ,ˆ,ˆ   ( )ki ,...,2,1,0=  are some real numbers 0ˆ ≠kα , and my′  is an 
approximate value of the first derivative of the solution of problem (1) at the point 

,...)2,1,0( =mxm . 
It is easy to see that method (2) in obtained from (1.1) in particular for iβ =0 

(i=0,1,2,…k). But peculiarities of these methods don’t coincide completely, i.e. in some cases 
their peculiarities differ. For example, method (1.1) may be stable, but we can’t say this about 
method (2). 

As is known, stability of method (1.1) is a necessary and sufficient condition for its 
convergence. Generally speaking, the notion of stability of the method is determined by the 
coefficients of its linear part, in the present case, by the coefficients iα̂  (i=0,1,2,…,k). Method 
(1.1) is said to be stable if the roots if its characteristical polynomial 
( ) 01 ˆˆ...ˆ αλαλαλ +++= k

kp  lie interior to a unit circle with no multiple roots on the boundary. 
However, there is no method of type (2) whose characteristical polynomial has a non-multiple 
root 1=λ , since two-fold property of the root 1=λ  is a necessary condition of its 
convergence. 

Thus, we showed that methods (2) and (1.1) in some cases have different peculiarities 
and therefore these methods are investigated separately. 

In this report, to the numerical solution of problem (1) we suggest the following multi-
step method with the third derivative 
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here, the coefficients ,iα
j

iβ  ( )3,2,1;,...,1,0 == jki  are some real numbers, 0≠kα , аnd 
( ) ( ) ( ) ( )yyxfyyxfyyyxfyyxfyyxg yyx ′′′+′′′+′′=′ ′ ,,),,(,,,,,, , 

           ( )mmmm yyxff ′= ,, ,   ( )mmmm yyxg ′= ,,    ( )...2,1,0=m .     

   Obviously,| ( )3
kβ |+| ( )3

1−kβ |+…+| ( )3
0β | 0≠ ,otherwise we could get method (1.1). However, in this 

case we meet calculation of the function ),,( yyxg ′  whence it is seen that for determining gm  it 
is necessary to find the quantities my′  even in the case when the function ),,( yyxf ′  is 
independent of  y′ . Thus, we obtain that while solving problem (1) by means of method (1.2), 
the values of the quantities  my′  should be calculated in parallels with finding the quantities my . 
Consequently, for solving problem (1) we apply the system composed of two multi-step 
methods. The method of type (1.1) may be used to calculate my′ . 

As it was noted above, stability of the multi-step method is a necessary and sufficient 
condition for its convergence. Therefore, stable methods are both of theoretical and practical 
interest. As is known (see[1]), if method (1.2) is stable, its power satisfies the condition 

43 +≤ mp  (see[8] ) (k is an order of method (1.1) or (1.2)). 
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Usually, the integer-value quantity p is said to be a power of method (1.2) if for sufficiently 
smooth function it hold the following: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 0,1

0
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Power of method (1.1) is determined in the same way. 
We can prove that if methods (1.1) and (1.2) are stable, 0ˆ ≠kα , 0≠kα , are of power 

p1 and p respectively, then the method composed of the methods of type (1.1) and 
(1.2)converges to the solution of problem (1) and convergence rate equals pp +1  for 

11 +≤ pp . Hence we get that under numerical solution of problem (1) by means of the method 
composed of the formulae of type (1.1) and (1.2), it is possible to select the method of type (1.2) 
with the best peculiarity. For example, for k>3, in place of the method of type (1.1) one can use 
stable implicit methods with maximal power Pmax=2k+2, and in place of the method of type 
(1.2) on can use stable explicit methods with power P=3k; in this case, we can also select the 
methods with extended domain of stability. 

For finding the values of )(xy′ , we can use the following scheme. Integrating the 
differential equation on the segment [x0,x], we have  

( ) ( ) ( ) ( )( )dssysysfxyxy
x

x
∫ ′+′=′

0

,,0 ,                                             (1.3) 

that is a Volterra type integral equation. The quadrate method is a traditional method for solving 
integral equations. However, to the numerical solution of equation (1.3) we can apply the multi-
step method and get  
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In order to construct the method having a higher accuracy than method (1.4), the functions 
))(),(,( sysysf ′  are replaced by an interpolation polynomial, and as a result we get the 

following method 
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that coincides with method (1.1). 
Now, consider construction of specific methods for solving problem (1). To this end, we 

determine the coefficients of these methods from the following homogeneous system of linear 
algebraic equations: 
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At first we construct stable explicit methods of type (1.2) with maximal degree Pmax=6. 
There are several such methods. Cite the following ones. Solving system (1.6) for k=2, we 
determine the coefficients of the multi-step method with the third derivative  

120/)49111(10/)2931(2/)1315( 1
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(1.7)  
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These methods are recurrent relations. Therefore, if ny′  and 1+′ny ,are known, it is easy to apply 
them to the solution of problem (1). For finding these values, we suggest the following method 
with power p=6 whose coefficients are determined from system (1.6) for k=2 2=k  и ( ) 03 =iβ  
( )2,1,0=i : 

240/)340139(240/)11128101( 12
2

1212 nnnnnnnn ggghfffhyy ++−++++′=′ ++++++      (1.9) 
and also the following implicit method with the degree p=5  

40/)34(80/)116445(2/)( 12
2

1212 ++++++ +−+++′+′=′ nnnnnnnn gghfffhyyy          (1.10) 
Usually, implicit methods are more precise than the explicit ones. But when we use it 

we get nonlinear equations and it doesn’t always turn out well to find their solution. Recently, in 
such cases it is suggested to use predictor-corrector type methods and follow them.  

As a predictor method we suggest the following stable method with the degree p=4: 
12/)717(2/)31( 1

2
112 nnnnnn gghffhyy +++−+′=′ ++++  

In place of the correction method we can use formula (1.10) or (1.9). 
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