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 We set out the statement and analysis of the results of numerical investigation of transient 
states in trunk pipelines in the presence of optimal quick-action boundary control by the 
transient process arising when switching from one steady-state behavior of raw material 
transportation to another.  

The problem considered is connected with a control problem for  wave process that was 
studied by a series of scientists including Lions, Ilyin, Butkovski, Vasilyev etc. [2-4, 6]. 

In contrast to the investigations carried out before, in the given work, we investigate a 
problem of optimal quick-action boundary control by the regimes of fluid transportation (oil) in 
pipelines in the presence of constraints of technological character imposed on the control 
actions and on the state of the controlled object. We give a qualitative analysis of the 
dependence of the minimal transient-process time from the dissipation coefficient, the length of 
the pipeline, the difference between the values of initial and final steady-state regimes, and the 
range of admissible controls for different values of initial and final steady-state regimes. We 
consider the controls on the class of piecewise continuous and of piecewise constant functions. 
In the latter case the moments of controls’ switchings are also optimized. 
 Consider an isothermal transportation process of one-phase oil flow over a linear part of a 
horizontal pipeline of length l , of diameter d , and of  the coefficient of hydraulic resistance λ . 
The regime of fluid flow is assumed to be laminar; oil is assumed to be incompressible having 
kinematical viscosity ν . On both ends of the oil pipeline, there are pumping stations providing 
the given transit regime. 

Unsteady laminar flow of incompressible fluid with constant density for practical purposes 
is sufficiently adequately described by the following linearized system of differential equations 
[1, p.15]:  
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where ),(),,( txtxpp ωω ==  are correspondingly fluid’s density and flow velocity at the 
point of the pipeline ),0( lx∈  at the moment of time 0tt > , c  is the acoustic sound velocity in 

the environment, λ  is the coefficient of hydraulic resistance, 2
322/2 dda νλω == .  

Suppose that up until some moment of time 0t  there had been a steady-state regime 
defined by the conditions 

000 ],,0[),(),(,),( ttlxxptxptx ≤∈==ωω ,   (2) 
where the known function )(0 xp  at the given fluid flow velocity 0ω  is defined by the 
geometrical dimensions of the pipeline and by the properties of the fluid (oil).  

It is necessary to note that usually in practice it is difficult to satisfy conditions (2) 
precisely, since there are always small perturbations in the pipeline caused by the certain non-
rhythmicity of the work of a technological equipment leading to moderate deviations from the 
establishment conditions (2): 
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where pδδω ,  are positive small values measured in percentages correspondingly from the 

values 0ω  and )(0 xp  of some steady-state regime depending, as a rule, from the precision of 
measuring technique used in the system of control by pipeline transportation. 

In this connection under δ -steady-state regime we understand such regime of raw 
material transportation over the pipeline at which conditions (3) are satisfied. 

Conditions (2) are satisfied at the expense of pumping stations maintaining the regime 
00 ,),(),0( tttlt ≤== ωωω .    (4) 

Suppose that it is necessary to switch the pipeline to a new steady-state regime under satisfying 
the following conditions 

[ ]lxTtxptxptx TT ,0,),(),(,),( ∈≥==ωω ,    (5) 
where T  is the time at which a new steady-state regime (7) would commence proceeding. 

The necessary change of the transportation regimes in pipelines must be provided by the 
changes in the regimes of pumping stations’ work, namely, at the expense of the change of 
volumetric expenditure (that is equivalent to the change in raw material’s flow velocity) at the 
ends of the linear part of the pipeline 

)(),(),(),0( 21 tutltut == ωω , [ ],,0 Ttt∈       (6) 
under the condition of the fulfillment of some technological and technical constraints (taking 
into account the characteristics of the pumps): 

,)(,)( 222111 utuuutuu ≤≤≤≤  [ ],,0 Ttt∈      (7) 
where )(,)( 21 tutu  are piecewise continuous functions. 

While controlling real technological processes, including the regimes of raw material 
pipeline transportation, the implementation of control actions on the class of piecewise 
continuous functions is often complex or even impossible. That is why on practice they consider 
control problems on technically easily implemented classes of functions such as piecewise 
constant, impulse etc. In this connection, in the given work, we also consider a class of 
boundary control problems for process (1) when the controls actions are the functions of the 
kind: 
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In this case, the optimal control problem consists in determining the finite-dimensional vectors  
LEvv ∈21, . As for the moments of time jτ , and correspondingly the intervals jτΔ , they may 

be determined by many ways. [At the given number of switchings L  of the control actions, 
there may be cases when switching times jτ  or Ljconstj ,1, ==Δ=Δ ττ  are given. The 

moments of switching times jτ , 1,1 −= Lj  can be optimized as well. In this case, the 

optimized vector is ( 11212111 ,...,,,...,,,..., −LLL vvvv ττ ). 
In the present work, the results of the solution of optimal control problems for transient 

processes are given. We assume that L  is given, and both the values of piecewise constant 
controls on their constancy intervals and the moments of control switchings jτ  are optimized. 

Reasoning from the pipeline strength conditions, it is necessary to meet the following 
technological constraint on the magnitude of the maximal value of pressure while considering 
the transportation process over the whole pipeline and during the whole period of controlling 
the transient process 
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where p  is the given overload capacity of pressure depending from the properties of the 
material, which the pipeline is made of; p  is the magnitude of the pressure (also called 
cavitational resource), below which the undesirable cavitation process (oil boil) occurs. 

Constraints (9) can be transformed into constraints on the overload capacity of the linear 
velocity ω  along the whole length of the pipeline and during the whole interval of the control 
by the process: 

,),( ωωω ≤≤ tx   ),,0( lx∈  [ ],,0 Ttt∈     (10) 
Taking into account previous considerations about δ -steady-state regime we take as the 

target functional the following functional: 
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Here DT  is beforehand given length of the time interval, on which observation over the 
process of transit and of establishment of the presence of δ -steady-state regime is carried out.  

The stated problem can be considered as a problem of optimal quick-action control by a 
distributed system at the given values of the state functions at the indefinite moment of 
completion time T  (considered as optimized) and with control in boundary conditions. To solve 
the problem, two approaches are proposed. According to the first approach, we can consider T  
as a parameter and use two-level optimization: on the upper level, in order to determine the 
optimal time of carrying on transient process ∗T  we apply any one-dimensional method; on the 
lower level, at the given current values of T , in order to determine 

),(min),(* TuJTuJJ
uTT == ∗  

we solve the optimal control problem for a distributed system with a fixed time. [according to 
the second approach, T  is considered as a component of the control; to determine the optimal 
value of this component we apply a joint optimization both on T  and )(tu . 
 For both approaches, necessary optimality conditions are obtained. They contain formulas 
for the components of the target functional on the optimized parameters – the operating regimes 
of the pumping stations and the completion time of the process T . The obtained formulas allow 
to use efficient numerical methods of first order optimization [5] for the solution to the optimal 
control problems. 

Various computational experiments have been carried out in the aim of disclosing some 
regularities in the dependence of the minimal transient-process time from the length of a part of 
the pipeline, from the dissipation coefficient a , and from the difference in the values of the 
parameters of the initial and final steady-state regimes. We investigated the control problem for 
transient processes without any constraints on the state and control functions, as well as with 
operating and technological constraints (9), (10).  

While carrying out numerical experiments under the constraints on the values of the 
functions of control actions and of state, we disclosed that the transient period of the optimal 
transient process depends on the length of the interval of admissible values of the controls 

],[ uu  for the given values of the initial and final steady-state regimes.  
 The control was considered on classes of piecewise continuous and constant functions. We 
also optimized the switching periods 1,1, −= Ljjτ  of the controls when the value L  was 
given while considering classes of piecewise constant functions. 
 The summary of the results of numerical experiments is as follows. 
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1. As is well known from theoretical investigations, which have been certified by the 
numerical experiments carried out, the minimal transient-process time in the presence of 
piecewise continuous control actions without any constraints on the control process does not 
depend on the diameter of a pipeline, on coefficient of resistance, on viscosity, on oil density, 
and on the values of initial and final steady-state regimes. The minimal transient-process time 
does depend on the length of a pipeline. But the optimal regimes of pumping stations in this 
case are practically unrealizable because of the big oscillation of the control functions. 

2. In the presence of technological constraints on the magnitude of the range (boundaries) of 
the control actions from a class of piecewise continuous functions, there take place the 
following facts: 

2.1. The dissipation coefficient has an influence on the transient-process time, namely, 
when the dissipation coefficient increases, the transient period decreases. At that the larger the 
range of the set of admissible controls, the less the influence of the dissipation coefficient. 

2.2. The difference between initial and final steady-state regimes has an influence on the 
transient-process time, namely, the more the consumption, the longer the transient-process time. 
The influence of the difference on the transient period decreases (up to zero) when the range of 
the set of admissible values of the control actions is increased. 

2.3. Transient-process time increases when the length of a part of the pipeline increases. 
2.4. The minimal transient-process time when switching from a less value of the regime to a 

larger one and vice-versa is the same. At that the optimal switching regimes are symmetric. 
3. When controlling the transient process on a class of piecewise constant functions in the 

presence of technological constraints on the controls’ regimes, all qualitative characteristics 2.1-
2.4 possessed by piecewise constant regimes are observed in this class too. 

3.1. In comparison to piecewise constant controls, here more time is required for the 
transient process in the presence of the same initial values of the technological parameters. 

3.2. When the number of constancy intervals and the range of admissible values of the 
controls  increase the transient-process time decreases. 

3.3. In case when the moments of controls’ switchings are also optimized, the decrease of 
the range of admissible values of the control results in the decrease of the number of controls’ 
constancy intervals.  

As the numerical experiments show, when controlling transient processes on a part of the oil 
pipeline at the expense of pumping stations located at both its ends, the transient period 
decreases twice in comparison with controlling a pumping station at one end, irrespective of a 
class of control actions and the range of admissible controls.  

In the general case, it is impossible to transfer the given above qualitative analysis on basis 
of computer-based experiments into quantitative assessments. But for every specific case of an 
oil pipeline and of the characteristics of oil, we can obtain quantitative characteristics of 
transient processes and recommendations on how to control them in the form of graphs, tables, 
and even more specific technological recommendations at the expense of carrying out numerous 
experiments 
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