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A sequential procedure of estimating the ARCH(p) parameters based on the least squares 
method is proposed. The choice of weights and the stopping rule guarantees the accuracy of the 
estimation. Results of numerical simulation prove the efficiency of the suggested procedure. 

 
Introduction. Some types of time series, for example, financial indexes possess the so-

called “cluster effect” when groups of observations with large and small variances alternate. To 
describe such processes, R. Engle proposed an autoregressive model with conditional 
heteroscedasticity (ARCH). In this model, the variance of the process is a stochastic 
autoregressive process. In the present paper, the problem of estimating the parameters of this 
process is considered and the sequential method that guarantees the bounded standard deviation 
of the estimation from the true parameter value is proposed.   

Problem statement. We consider the ARCH(p) process specified by the equations 
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Here 1{ }l l≥ε  is a sequence of independent identically distributed random variables with mean 0 
and variance 1. Parameters µ and λ are supposed to be unknown. The problem is to construct a 
guaranteed estimation of the vector of unknown parameters 0[ , , ]pΛ = λ λK  on the basis of 

observations 1{ }l lx ≥ . 
 Sequential estimation. To estimate the parameters, we use the approach proposed in 
[1] to classify the autoregressive processes with unknown variance. To take advantage of these 
results, we rewrite process (1) in the form 

2 2 2 2( 1)l l l lx = σ + σ ε − .  
Denoting 2 2( 1)lE ε −  by 2B  and 2( 1)l Bε − /  by lη , we have 
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Here 1{ }l l≥η  is the sequence of independent identically distributed random variables with 
0lEη =  and 2 1lEη = . Here process (2) is the p-order autoregressive process. The noise 

variance 2 2 2 2
0 1 1( )l p l px x B− −λ + λ + + λK  is unknown and moreover, unbounded from above. 

Denoting 
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we rewrite (2) as 
1 1l l l lz a a B− −= Λ + Λ η .  (4)

Since 1 0l pa −Λ ≤ λ + + λK , the noise variance in (4) is bounded from above. 
 To estimate the unknown parameters, we take advantage of a two-stage procedure based 
on the modified least squares method. The purpose of the first stage is to reduce the influence of 
the  unknown noise variance. Let us denote 
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Hence, we can represent the process { }lx%  as 

1l l lx a −= Λ ε .% %  (5)
Let us define a compensating factor nΓ  as 
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We note that 1 0l pa −Λ ≥ λ + + λK . Taking into account this inequality from (6), we have 

( )2
0

1 1

n p

E
B

≤
Γ λ + + λK

. (7)

 In the second stage, we construct the parameter estimation in the form 
1
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where τ is the random stopping time defined as 
( ) minmin{ 1 ( ) }H k n k Hτ = τ = ≥ + : ν ≥ ,  (9)

min ( )kν  is the minimum eigenvalue of the matrix ( )A k . Now we  define the weights lv . Let m  
be the minimum value of k  so that ( )A n k+  will be regular. On the interval [ 1 1]n n m+ , + − , 
the weights are chosen as  
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The weights on the interval [ 1]n m+ ,τ −  are found from the following condition:  
2min ( ) k
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At the instant τ , the weight is found from the condition  
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 Properties of the proposed estimation are given in Theorem 1. 
 Theorem 1.  Let the expectation nC  in (6) exists for noise lε  in (1) for given n . Then 
the stopping time ( )Hτ  defined by (9) is finite with probability 1 and mean square accuracy of 
estimator (8) is bounded from above 
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 Proof of Theorem 1. According to [2], stopping time (9) is finite with probability 1 if 
2
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We note that according to (3), 1T
l la a ≥ . So the series in (14) converges only if 0P

lv ⎯⎯→  when 
l →∞ . However, this coefficient is a positive root of a quadratic equation. It is greater then the  
cosine of the angle between the eigenvector corresponding to the minimum eigenvalue of the 
matrix ( )A l  and the vector la . This cosine converges to zero if and only if the vector la  
converges to a certain vector. However, according to (1)–(3), any component of the vector la  
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can became equal to 1 when the others do not exceed 1, so la  does not converge. Hence lv  does 
not converge to zero and condition (14) holds. So stopping time (9) is finite with probability 1. 

Consider the mean square accuracy with estimator (8). Using (4), the Cauchy-
Bunyakovskii inequality, inequality min( ) ( )A k k|| ||≥ ν , and (12), one can obtain 
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Since 1 0l pa −Λ ≤ λ + + λK ,  the following inequality holds 
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To estimate the first term, we now introduce the truncated stopping time ( ) min{ }N Nτ = τ, . It is 
obvious that ( )Nτ → τ  when N →∞ . Let us consider the variable 
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It differs from the first term only in the summation limit. Let 1( )l lF …= σ ε , ,ε  be σ -algebra 
generated by the variables 1{ }l…ε , ,ε . Then using the properties of conditional expectations, one 
can obtain 
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From (10)–(12), one can have 
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Similarly, one can demonstrate that the second term in (16) is equal to zero. Using these results 
in (16) and (15), one gets 
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Using (7), one gets (13). 
 Asymptotic properties of the estimator. Theorem 1 gives us the boundary of the mean 
square accuracy with estimator (8). The following theorem gives us an asymptotic boundary for 
H →∞ . 
 Theorem 2. If the conditions of Theorem 1 hold and 4

lEε < ∞ , then  for sufficiently 
large H  

{ } ( )
2

( ) 1 1 2
1

xHP H x p
p

∗
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Λ − Λ > ≤ + − Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
, 

where ( )Φ ⋅  is a standard normal distribution function. 
 Proof of Theorem 2 is based on the proof of the central martingale limit theorem 
proved in [3]. We have not got a short version of the proof and therefore omit it.   

Numerical simulation. We considered the ARCH(1) process specified by (1) with 
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0 0.7λ =  and 1 0.5λ = . For every ,H  1000 replications of the experiment were performed. The 
table below presents the results of simulation of the proposed estimation procedure.  

Here  *
0λ and  *

1λ  are average estimations of the corresponding parameters, 0D  and  1D  
are their standard deviations, 0Δ  and 1Δ  are their maximum deviations, and τ  and maxτ are 
mean and maximum stopping times. 
H  *

0λ  0D  0Δ  *
1λ  1D  1Δ  τ  maxτ  

10 0.7073 0.0179 0.6670 0.4993 0.0327 0.6698 160 221 
20 0.7062 0.0093 0.3736 0.5033 0.0172 0.4254 313 415 
40 0.7032 0.0048 0.2581 0.5005 0.0110 0.3075 617 761 
The results of numerical simulation prove the efficiency of the procedure. The standard 
deviations decrease with increasing H . In addition, the mean and maximum estimation times 
increase linearly with H , and this fact proves high efficiency of the procedure. The maximum 
stopping time exceeds the mean stopping time by no more than 40%, and this difference 
decreases with increasing H . 
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