

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/28.pdf

114

SOFTWARE FOR PROCESSING OF NATURAL LANGUAGE TEXTS

Jemal Antidze1, Nana Gulua2

1Tbilisi State University, Vekua Scientific Institute of Applied Mathematics, Tbilisi, Georgia,
2Nana Gulua, Sokhumi State University, Tbilisi, Georgia

1jeantidze@yahoo.com, 2ngulua7@mail.ru

The computer morphological analysis of Georgian words is one of the main components
for solving such problems as machine translation from Georgian language to the other
languages, as well as the automated checking of orthography of Georgian texts, and some
problems of artificial intelligence, which require computer processing of Georgian texts. The
complete system for computer morphological analysis of Georgian words does not exist yet. If
we need to use Georgian language to communicate with computer, the solving of mentioned
above problem is very urgent.

For solving this problem using of finite automaton, which is widely used for the
languages from Western Europe, is not feasible. This is happening because of some verb-forms
of Georgian language require backtracking, which is impossible with finite automaton. From
the other side, using of full search algorithm slows the process of morphological analysis. For
this reason, we formed a method, which is making the analysis process faster, compare to full
search algorithm [1]. This method uses constraints to establish correct morpheme’s selection.
Already separated presumable morphemes from word, morphological analysis tool checks it on
satisfaction of their constraints. If the constraint is satisfied, the tool continues separation of
other morphemes in opposite case it performs backtracking to search the new alternatives and
rejects the last separated morpheme. In this way, the process of removing of incorrect
alternatives happens in advance, what speeds up the searching process. The constraints are
logical expressions, which we can compose from the features of morphemes. The tool checks,
if separated morpheme's feature has particular value, which defines correctness of the
separation. We compose the values of morphemes’ features according to morphology of
Georgian language.

Under complete computer morphological analysis, we understand all valid splitting of a
word-form in morphemes and establishment of morphological categories for each splitting. The
definition contains ambiguities of words. The following ambiguity is widespread:
1. Graphical coincidence of different verb-forms (by meaning) in presence circle, which have

the same root. For instance, verb-form "agebs", which may mean loss (many) or build (plan)
and so on;

2. Graphical coincidence of a verb-form with its infinitive, for instance, "amoxsna" may mean,
"resolution" or "he has resolved";

3. In time of splitting of verb-form, graphical coincidence of morphemes from different
neighboring classes, for instance, "a" as the preverbal or vowel prefix or first letter of a
verb’s root in the following verb-forms: "a-a-alebs", "a-alebs" and "aldeba". When we see
first letter of the verb-form “aaalebs”, we cannot say, which morpheme we have, before we
have seen following two letters. In first example, first “a” is preverbal. In second example,
first “a” is vowel prefix and in third example first “a” is first letter of the root “al”. This
means, that Georgian verbs splitting in morphemes needs at least parsing algorithm for LL(2)
grammar ([2]), i.e. complete morphological analysis of Georgian words by finite automaton
is impossible.

In the second case, morphological analysis for verb-form "amoxsna" must give two
different parsing: one- for infinitive and second - for verb-form. For this, we need
nondeterministic algorithm. Deterministic algorithm cannot give two different parses for the

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/28.pdf

115

same word-form. Thus, deterministic algorithm is not valid for complete morphological
analysis of Georgian words. All author fulfilled morphological analyses for Georgian words by
finite automaton or by deterministic algorithm [3, 4]. For complete morphological analysis, we
must apply non-deterministic algorithm, for instance, from left to right in depth search
algorithm with backtrackings. As far as backtrackings take down the speed of the algorithm, we
must find a method, which reduces them. Such possibility exists. We can exclude morphemes,
which conflict with found morphemes at a moment. In other case, we can divide morphemes in
classes so, that one representative of each class will meet as maximum one times in a word-
form. Among morphemes of a verb-form are important roots. We can divide roots into classes
so, that each morpheme, which can meet in a word-form, will indicate definitely a
morphological category. All this reduces backtrackings and establishing morphological
categories considerably. After this, the establishment of morphological categories of a word is
easy. We realized complete morphological analysis of Georgian words by the tool [5-7].

The Software is designed for the processing of natural language texts. We use the system
to nalyze syntactic and morphological structure of the natural language texts. Using specific
formalism, which we created for this purpose, allow us to write down syntactic and
morphological rules defined by particular natural language grammar. This formalism represents
the new, complex approach, which solves problems of morphological and syntactic analysis for
some natural language. We implemented a software system according to this formalism [1].
One can realize syntactic analysis of sentences and morphological analysis of word-forms with
this software system. We designed several special algorithms for this system. Using the
formalism, which is described in [8, 9], is very difficult to use for Georgian language, as far as
expressing of some morphological rules is very complicated and understanding of such writing
is difficult.

The software consists of two parts: syntactic analyzer and morphological analyzer.
Purpose of the syntactic analyzer is to parse an input sentence, to build a parsing tree, which
describes relations between the individual words within the sentence, and to collect information
about the input sentence, which the system figured out during the analysis process. It is
necessary to provide a grammar file to the syntactic and morphological analyzers. There must
be recorded syntactic or morphological rules of particular natural language grammar. Basic
methods and algorithms, which we used to develop the system, are operations defined on
features’ structures; trace back algorithm (for morphological analyzer); general syntactic
parsing algorithm for context free grammar and features’ constraints method. Features’
structures are widely used on all levels of analysis. We use them to hold various information
about dictionary entries and information obtained during analysis. Each symbol defined in a
morphological or syntactic rule has an associated features’ structure, which we initially fill
from the dictionary, or the system fill them by the previous levels of analysis. Features’
structures and operations defined on them we use to build up features’ constraints. With general
parsing algorithm, it is possible to get a syntactic analysis of any sentence defined by a context
free grammar and simultaneously check features’ constraints, which may be associated with
grammatical rules. Features’ constraints are logical expressions composed by the operations,
which we defined on the features’ structures. We attach features’ constraints to rules, which we
defined within a grammar file. If the constraint is not satisfied during the analysis, then the
system will reject current rule and the search process will go on. We can attach features’
constraints also to morphological rules. However, unlike the syntactic rules, we can attach
constraints at any place within a morphological rule, only not at the end. This speeds up
morphological analysis, because the system checks constraints early and it rejects incorrect
word-form’s division into morphemes in a timely manner.

Formalism, which we developed for the syntactic and morphological analysis is highly
comfortable for human. It has many constructions that make it easier to write grammar file.

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/28.pdf

116

Morphological analyzer has a built-in preprocessor. It utilizes STL standard library. Program
operates in UNIX and Windows operating systems. We can compile it and use in any other
platform, which contains modern C++ compiler.

In our system, we use features’ structures and operations defined on them to put
constraints on parser rules. That makes parser rules more suitable for natural language analysis
than pure CFG rules. We have generalized notation of constraint [2]. Constraint is any logical
expression built up with operations defined on features’ structures and basic logical operations
and constants: & (and), | (or), ~ (not), 0 (false), 1 (true).

Parser rules we can write following way:

}{}...2{2}1{1 CnAnCACAS >−

Where S is an LHS non-terminal symbol, Ai (I = 1, …, N) are terminal or non-terminal
symbols (for morphological analyzer only terminal symbols are allowed), and Ci(I = 1, … , N)
are constraints. Each constraint is check as soon as all of the RHS symbols located before we
match the constraint to the input. If a constraint evaluates to “true” value then parser will
continue matching, otherwise if constraint evaluates to “false” parser will reject this alternative
and will try another alternative. There is a features’ structure associated with each (S and Ai)
symbol in a rule. If a symbol is a terminal symbol, then we take initial content of its associated
features’ structure from the dictionary or from the morphological analyzer (for syntactic
analyzer). We take content for a non-terminal symbols from the previous levels of analysis. We
use constraints not only to check the correctness of parsing and not only to reduce unnecessary
variants. We also use them to transfer data to a LHS symbol, thus move all necessary
information to the next level of analysis. We can use assignment or unification operations for
this purpose. To access a features’ structure for particular symbol, we can use a path notation.
We write a path using angle brackets. For example, <A> represents a features’ structure
associated with the A symbol. We can access individual fields by listing all path components in
angle brackets.

Purpose of morphological analyzer is to split an input word into the morphemes and
figure out grammar categories of the word. We may invoke morphological analyzer manually
or automatically by the syntactic analyzer.

We used special formalism to describe morphology of natural language and pass it to the
morphological analyzer. There are two main constructions in the grammar file of
morphological analyzer: morphemes’ class definition, and morphological rules [10].
Morphemes’ class definition is used to list all possible morphemes for a given morphemes’
class. For example:

...]}"[..._"
...]..."[...2_...]""[...1_{"@

featuresnmorpheme
featuresmorphemefeaturesmorphemeM =

It is possible to declare empty morpheme, which means that we may omit the morphemes’ class
in morphological rules. Below is formal syntax for morphemes’ class definition:

..._::
}",{"::__

}""__{""""@""::_

>><=<><
><>=<><

><=><=><

structurefeaturestringmorpheme
morphememorphememorphemesoflist

morphemesoflistidentifierdefinitionmorpheme

We define morphological rules following way:
}{}...2{2}1{1 CnMnCMCMWord a

Where Mi are morpheme classes, and Ci (i = 1, … , n) are constraints (optional).

Purpose of syntactic analyzer is to analyze sentences of natural language and produce
parsing tree and information about the sentence. In order to accomplish this task, syntactic
analyzer needs a grammar’s file and a dictionary (or it may use morphological analyzer instead
of complete dictionary). We write grammar rules for syntactic analyzer like CFG rules.

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/28.pdf

117

However, they may have constraints and symbol position regulators. We can write the rule
according to these conventions:

};{:...21
}{}...2{2}1{1

CRAnAAS
CnAnCACAS

a

a

Where S is an LHS non-terminal symbol Ai (I = 1, …, n) are RHS terminal or non-terminal
symbols, C and Ci (i = 1, … , n) are constraints, and R is a set of symbol position regulators.
Position regulators declare order of RHS symbols in the rule, consequently making non-fixed
word ordering. There are two types of position regulators:
Ai < Aj means that symbol Ai must be placed somewhere before the symbol Aj
Ai - Aj means that symbol Ai must be placed exactly before the symbol Aj
 Described software tools we used for morphological and syntactic analyses of Georgian
texts. All problems mentioned above were resolved. We simplified composition of grammar
file by using macros with parameters.

References

1. J. Antidze, D.Mishelashvili. Software Tools for Morphological and Syntactic Analysis of
Natural Language Texts. (In Georgian) Computer Sciences and Telecommunications, 1(12),
Tbilisi (2007) 10p. http://gesj.internet-academy.org.ge/gesj_articles/1345.pdf

2. J. Antidze. Theory of Formal Languages and Grammars, Natural Languages Computer
Modeling. (In Georgian) “Nekeri”, Tbilisi (2009) 350 p.

3. K. Datukishvili, M. Loladze, N.Zakalashvili. Georgian Language Processing (morphological
level). (In English) Report of Symposium – Natural Language Processing, Georgian
Language and Computer Technologies, Tbilisi (2003) 1 p.

4. L. Margvelani. Machine Analysis System of Georgian Word Forms. (In English) Report of
Symposium – Natural Language Processing, Georgian Language and Computer
Technologies, Tbilisi (2003) 1 p.

5. J. Antidze, D. Mishelashvili. Instrumental Tool for Morphological Analysis of Some Natural
Languages. (In English) Reports of Enlarged Session of the Seminar of IAM TSU, vol.19,
Tbilisi (2004) 5p.

6. J. Antidze, D. Melikishvili, D. Mishelashvili. Georgian Language Computer Morphology.
(In English) Conference – Natural Language Processing, Georgian Language and Computer
Technology, Tbilisi (2004) 1 p.

7. J. Antidze, N. Gulua. On selection of Georgian texts computer analysis formalism. (In
English) Bulletin of The Georgian Academy of Sciences, 162, N2, Tbilisi (2000) 4 p.

8. S. McConnell. PC-PATR: Reference Manual, a unification based syntactic parser, version
1.2.2 , (In English) http://www.sil.org/pcpatr/manual/pcpatr.html

9. E. Antworth, S. McConnell. PC-Kimmo Reference Manual, A two-level processor for
morphological analysis, version 2.1.0. (In English) http://www.sil.org/pckimmo/v2/pc-
kimmo_v2.html

10. D. Melikishvili. The Georgian Verb: A Morphosyntactic Analysis. (In English) Dunwoody
Press, New York (2008) 742 p.

