

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/14.pdf

59

USING REFLECTION FOR SOFTWARE FAULT TOLERANCE

Shahrokh Jalilian, Tofig Kazimov, Fatemeh Salar

Institute of Information Technology of ANAS, Baku, Azerbaijan
sh.jalilian@yahoo.com

1 Introduction and Background
1.1 Software Fault Tolerance
Software Fault Tolerance represents a major challenge to designers of modern computing
systems, in particular, in the development of critical applications. The construction of fault
tolerant systems is not a simple task; it requires the use of appropriate techniques during the
whole software development cycle. In general, these techniques are based on the provision of
redundancy, both for error detection and error recovery. However, the provision of software
redundancy implies: a cost increase of the software development, and a complexity increase of
the system, caused by the addition of redundant components [2]. Software fault tolerance is
concerned with techniques necessary to enable a system to tolerate software faults, that is, faults
in the design and construction of the software itself. Strigini presented a comprehensive survey
of software fault tolerance issues in [15]. Some of the software mechanisms used to support
fault tolerant applications include check pointing facilities and replicated servers. Such fault
tolerant behaviors can be implemented either by error processing protocols in the underlying
runtime systems, or by using object oriented methodologies, so making nonfunctional
characteristics inheritable. All these approaches have advantages and drawbacks: if the error
processing mechanisms are provided by the underlying system, then the transparency and
separation of concerns can be achieved, but this lacks of flexibility. If fault tolerance behavior is
supported by predefined libraries then programmers can write their own error processing
mechanisms but transparency and separation of concerns can not be achieved. In object oriented
systems, when using inheritance, separation of concerns is achieved but transparency is not
totally covered, because some programming conventions are required [10].

1.2 Reflection
Computational reflection is defined as the activity performed by an agent when doing
computations about its own computation. Thus, a reflective system incorporates data structures
representing itself in order to support actions on itself. A reflective object oriented system may:
Monitor the behavior of its components and computations; Dynamically acquire methods from
other objects; Make additional/deletion or changes to the set of its own methods [10]. From a
conceptual viewpoint, reflection can be defined as the property by which a component enables
observation and control of its own structure and behavior from outside itself. This means that a
reflective component provides a metamodel of itself, including structural and behavioral
aspects, which can be handled by an external component. This information is used as an input to
perform appropriate actions for implementing nonfunctional properties (concerning, for
instance, fault tolerance or security strategies). The reflective systems that we consider are
structured in two different levels of computation: the baselevel, which executes the application
(functional) software, and the metalevel, responsible for the implementation of observation and
control (nonfunctional) software. The metalevel software has a runtime view (the metamodel) of
the behavior and structure of its baselevel. According to this view, the metalevel can take
decisions and apply corresponding actions on base-level components. The mechanisms
providing such a metamodel are the reflective mechanisms of the system [1]. The use of
metalevel programming permits transparent separation of functional components from non-
functional components in a system [10]. Two major reflective approaches have been pointed out
in [9]: metaobject and communication reification. The metaobject approach consists in linking
each base entity - also termed referent - with one or more meta entities - also termed meta-
objects - reifying it. The communication approach consists in reifying only the base-entities

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/14.pdf

60

interactions into specific meta-entities. For the former approach we analyze the metaclass and
metaobjects models, while for the latter we analyze the message reification and channel
reification models. The characteristics of these reflective models have been evaluated in [9]
based on three categories named, generic measures, meta-entities features and type of reflection
(Structural/Behavioral). Their analysis shows that each considered model has its own
peculiarity. These diversities make different model suitable for different tasks. The models
belonging to the communication reification approach are more suitable than the others to
develop distributed reflective systems. Moreover, the models belonging to the metaobject
approach are more suitable than the others to handle structural reflection, and they permit to
extend reflective systems dynamically changing its structure. However poor flexibility and lack
of continuity respectively make the metaclass model and the message reification model not well
suited for building up software fault tolerant applications. Entering in details, metaobject and
channel reification are the winners of their respective categories. In respect to the other, these
models are adaptable to any requirement. The other models have limitations; the metaclass
model is limited by language requirements and the message reification model is limited by the
lack of information continuity [9].

2 MOP-Based Fault Tolerant Systems
2.1 MetaObjects Protocols
In systems mixing the object-oriented approach and the above reflective concepts, a so-called
Metaobject Protocol (MOP) handles the interactions between the base and the metalevel
software [1]. We will refer to the baselevel objects as “functional objects” and to metalevel
objects as “nonfunctional objects”. While functional objects model entities in the real world,
nonfunctional objects model properties of functional objects (to reflect this, nonfunctional
classes may have names that correspond to properties, e.g. fault_tolerant_object) [4].
The notion of protocol relates here to the interaction between object (functional objects) and
metaobject (nonfunctional objects). From a design viewpoint, one can distinguish four different
processes in a reflective system to observe and control at the metalevel the features of the
system’s base-level. The reification process corresponds to the process of exhibiting to the
metalevel the occurrence of base-level events. The introspection process provides means to the
metalevel for retrieving base-level structural information. Finally, the intercession process
enables the metalevel to act on the baselevel behavior (behavioral intercession) or structure
(structural intercession). The term behavioral reflection will refer from here to both reification
and behavioral intercession. Symmetrically, structural reflection will be used to designate both
introspection and structural intercession mechanisms [1].

2.2 Related Work
In early works, various MOPs have been defined and used for the implementation of fault
tolerant mechanisms at the metalevel. The MAUD[11] and GARF[12] architectures propose
reflective mechanisms for intercepting baselevel events at the metalevel. The reflective
capabilities defined in these MOPs are, however, limited to behavioral reflection. This
limitation means that these systems are not able to handle structural aspects of baselevel entities
that are essential, for instance, during checkpointing. MOP enabling both behavioral and
structural reflection was used in FRIENDS [13]. This MOP supplies a metamodel expressed in
terms of object method invocations and data containers defined for objects’ states [1]. Several
Authors addressed the transparent addition of fault tolerance features to a software via reflection
by means of: applying channel reification for communication fault tolerance, employing
reflective N-version programming and recovery blocks, employing reflective server replication
and also employing reflective checkpointing in concurrent object oriented systems [14]. In the
next section of the paper, some of the implementations of using reflection in software fault
tolerance is described. Using reflection in object-oriented languages was invested by B.Smith
in the environment of 3-Lisp. P.Maes proposed a metaobject approach to implementing
reflective systems in the framework of object-oriented computing. The metaobject approach has

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/14.pdf

61

been used in many application areas: debugging, concurrent programming and distributed
systems [9]. A successful example is the metaobject protocol in CLOS [14].

3 Some reflective approaches for implementing Software fault tolerance
An abstraction model (architecture) is suggested in [8] to describe common characteristics of
the existing software fault tolerance schemes. Extended model in this architecture suggests a
coherent framework for enforcing fault tolerance in an object-orientated fashion. The
abstraction architecture helps the separation of objectlevel and metalevel descriptions. The
controllers that control the execution of object variants are naturally implemented as meta-
objects. Since a metaobject is also an object, it can be controlled by a meta-metaobject.
The aim of this section is to describe several approaches and programming styles that Reflection
has been used in them. These approaches are considered for programming fault tolerance in
distributed and embedded applications. Finally the advantages and limits of the reflection are
considered in these systems. In distributed systems, administrative requirements, such as
recoverability and persistence, can be implemented by replication of components. In this case,
the object is the smallest grain of distribution and fault tolerance [2]. In [7], the methodology
using an object oriented metalevel technique in designing of an extensible language for
distributed computing has been proposed. For the use of this methodology, OpenC++ (which is
a C++ variant including a simple metaobject protocol) is presented. To obtain a new
functionality that fits the application, the programmer can easily extend the implementation
within OpenC++ itself [7]. FRIENDS (Flexible & Reusable Implementation Environment for
your Next Dependable System) is a metalevel architecture that its advantages have been
advocated in [5]. The objective of FRIENDS was to investigate the use of object-oriented
techniques and a reflective language approach for the development of fault tolerant distributed
systems. The idea is to handle dependability mechanisms at a separate abstraction level and to
bind them to application objects according to their needs. The objective of the FRIENDS system
was to provide mechanisms for building fault tolerant applications in a more flexible way.
Flexibility is obtained through the provision of object oriented libraries of metaobjects and also
through the provision of subsystems on a microkernel platform. The FRIENDS system today is
very dependent on the language used (Open C++) and on its homemade object-oriented
distributed support [5]. The most important result in one of the reflective architectures
(FRIENDS) is that the runtime execution overhead due to the use of a metaobject protocol, is
negligible with respect to the runtime execution cost of the mechanisms implementing
metafunctional properties within the metaobjects. FRIENDS system is an platform that enables
Object-Oriented and metalevel programming to be used for implementing meta functional
properties. FRIENDS system is a very suitable platform for experimenting with object
orientation and metalevel programming in various directions. Some experiments have already
been done using OpenC++ V2. Performance Overheads are one of major issues in metalevel
techniques, but they are not critical in domains such as distributed computing. Since the
overhead of OpenC++ is negligible in comparison with the implemented functionalities, the
proposed approach in [7] is applicable to actual problems.

4 Advantages and Problem Statements
The main advantage of using reflection from a design viewpoint is the recognized ability to
adjust mechanisms according to system needs. The separation of concerns promoted by the
reflective approach has already shown significant effects on transparency for the application
programmer, independence from the application software, reuse of core mechanisms and
specialization for various contexts of usage [1]. Some advantages for application programmers
are the: (i) Separation of concerns, that is, separate the concerns related to the application
domain from those related to the implementation of fault-tolerant mechanisms; (ii) it promotes
code reuse of fault-tolerance mechanisms, it allows application programmers to use the most
adequate fault tolerance strategy for his implementation, and (iii) it provides a design that is

The Third International Conference “Problems of Cybernetics and Informatics”
 September 6-8, 2010, Baku, Azerbaijan. Section #1 “Information and Communication Technologies”

www.pci2010.science.az/1/14.pdf

62

more adaptable, flexible and easier to extend than traditional designs for developing fault
tolerant software[2]. In traditional systems, the integration of mechanisms within applications
still raises several problems, mainly related to flexibility. We understand flexibility in the
following way: ease of use and transparency of the mechanisms for the programmer; reusability
of existing mechanisms to derive new ones. None of the solutions traditionally used manages to
ensure all these properties at the same time. Reflection aims at providing a good balance among
these properties. The main benefit of reflective approaches with respect to more conventional
solutions is that they provide means to customize nonfunctional mechanisms, even providing
facilities to change them during the operational life of the system without any modification of
the executive layers [5]. Comparison of using reflection in embedded and distributed systems
shows that overhead in distributed systems is more acceptable. The overhead of distributed
systems due to the existence of communication delays between different nodes is negligible.
Therefore using reflection in embedded systems where performance is important should be
considered carefully.

5 Conclusion
There have been a few papers about experimental evaluation of software fault tolerance
schemes in the context reflection. These experiments show that the runtime overhead of
software fault tolerance is generally acceptable while making a clear, structured separation of
concerns in both design and operation stages. Furthermore, when the communication cost is
considered, the overhead imposed by reflective operation calls will not be of major concern. The
overhead of distributed systems due to the existence of communication delays between different
nodes is negligible. Therefore using reflection in embedded systems where performance is
important should be considered carefully. Channel reification model is an appropriate model for
reflective fault tolerant software with respect to other models. This model is adaptable to any
requirement while the metaclass model is limited by languages requirements and the message
reification model is limited by the lack of information continuity.

References
[1] Juan Carlos Ruiz, Marc-Olivier Killijian, “Reflective Fault Tolerant Systems: From Experience to Challenges,” IEEE

TRANSACTIONS ON COMPUTERS, Vol.52, NO.2, February 2003.
[2] Luiz E.Buzato, “A Reflective Object-Oriented Architecture for Developing Fault-Tolerant Software,” Institute Of

Computing Scienec, University of Compainas, Brazil.
[3] Marc- Olivier Killijian and Jean-Charles Fabre, “Adaptive Fault Tolerant Systems: Reflective Design and Validation,”,

University of Compainas, Brazil.
[4] Walter Cazzola, Andrea Sosio, “Reflection and Object-Oriented Analysis,” DISCO, pages95-106, November 1999.
[5] J.C. Fabre and T. Pe´rennou, “A Metaobject Architecture for Fault-Tolerant Distributed Systems: The FRIENDS

Approach,” IEEE Trans. Computers, special issue on dependability of computing systems, vol. 47, no. 1, pp. 78-95,
Jan. 1998.

[6] J. Xu, B. Randell, and A.F. Zorzo, “Implementing Software Fault Tolerance in C++ and Open C++: An Object Oriented
and Reflective Approach,” Proc. CADTED ’96 , pp. 224-229. Beijing, China: Int’l Academic Publishing, 1996.

[7] Dr. Stéphane Ducasse, “Reflective Programming and Open Implementations,” http://www.iam.unibe.ch/~ducasse/
University of Bern,2000/2001.

[8] Xu, B. Randell, C.M.F. Rubira & R.J. Stroud, “Towards an Object-Oriented Approach to Software Fault Tolerance,”
In: Fault-Tolerant Parallel and Distributed Systems, D.R. Avresky (Ed.), IEEE Computer Society Press 1994.

[9] Walter Cazzola, “Evaluation of Object- Oriented Reflective Models,” DSI-University of Milano, July 4,1998.
[10] M.Ancona,W.Cazzola, “Channel Reification: a reflective approach to fault-tolerant software development,” DISI-

University of Genoa, October 9,1995.
[11] G. Agha et al., “A Linguistic Framework for Dynamic Composition of Dependability Protocols,” Proc. Dependable

Computing for Critical Applications 3, pp. 345-363, 1993.
[12] B. Garbinato, R. Guerraoui, and K. Mazouni, “Implementation of the GARF Replicated Objects Platform,” Distributed

Systems Eng. J., vol. 2, pp. 14-27, 1995.
[13] J.C. Fabre and T. Pe´rennou, “A Metaobject Architecture for Fault- Tolerant Distributed Systems: The FRIENDS

Approach,” IEEE Trans. Computers, special issue on dependability of computingsystems, vol. 47, no. 1, pp. 78-95, Jan.
1998.

[14] Jean-Charles Fabre, Vincent Nicomette, “ Implementing Fault Tolerant Applications using Reflective Object-Oriented
Programming,” Department of Computing Science University of Newcastle upon Tyne,1998.

[15] L.Strigini, “ Software Fault Tolerance,” PDCSI 1st year Report, vol.2, Newcastle, 1990.

