ESTIMATION OF PARAMETERS OF CHI-SQUARE STATISTICAL STRUCTURES

Zurab Zerakidze

Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia head@math.sci.tsu.ge

Let there is given (E,S) measurable space and on this space there is given μ_a , $a \in A$ family of probability measures depended on $a \in A$ parameter. Let bring some definitions (see [1]--[2]).

Definition 1. The following object {E,S, μ_a , $a \in A$ } called chi-square statistical structure connected with a stochastic system, if $\forall a, a \in A \ \mu_a$ is chi-square measures on S.

Definition 2. A statistical structure {E,S, μ_a , $a \in A$ } connected with a stochastic system is called orthogonal (singular) if $(\forall i)$ ($\forall j$) ($i \in A$, $j \in A$, $i \neq j \Rightarrow \mu_i \perp \mu_i$)

Definition 3. A statistical structure {E,S, μ_a , $a \in A$ } connected with stochastic system is said to be weakly separable, if there exists a family of S-measurable sets X_a , $a \in A$ such that

the relations $(\forall i) (\forall j) (i \in A, j \in A, i \neq j \Rightarrow \mu_i(X_j) = \begin{cases} 0, if i \neq j, \\ 1, if i = j \end{cases}$

Definition 4. A statistical structure {E,S, μ_a , $a \in A$ } connected with a stochastic system is said to be strongly separable, if there exist pairwise disjoint S-measurable sets X_a , $a \in A$ such that the relation $(i \in A, \mu_i(X_i) = 1, \forall i \in A \text{ is fulfilled.}$

Definition 5. A statistical structure {E,S, μ_a , $a \in A$ } connected with a stochastic system will be said to admit a consistent estimate of parameters if there exists a measurable map g of the space (E,S) in (A, \Im) such that $\mu_a \{x : g(x) = a\} = 1$, $\forall a \in A$.

Theorem1. On a arbitrary set *E* of continuum power one can define chi-square ortogonal statistical structure connected with a stochastic system having maximal possible power equal 2^{2^c} , where *c* is continuum power.

Theorem2. On a arbitrary set E of continuum power one can define chi-square weakly statistical structure connected with a stochastic system having maximal possible power equal 2^c , where c is continuum power.

Theorem3. On a arbitrary set E of continuum power one can define chi-square strongly statistical structure connected with a stochastic system having maximal possible power equal c, where c is continuum power.

Theorem4. Let $M_H = \bigoplus H_2(\mu_a)$ be the Hilbert space of measures and E be a complete separable metric space and S be the Borel σ -algebra and $card(A) \le 2^{\chi_0}$. Then in the theory (ZFC)\$(MA) for the chi-square ortogonal statistical structure {E,S, μ_a , $a \in A$ }to admit a consistent estimate of parameters $a \in A$, it is necessary and sufficient that it admit on unbiased estimate of any parametric function g and the correspondence $f \to \psi_f$ given by the equality

$$\int f(x)v(dx) = \langle \psi_f, v \rangle, \, \forall \, v \in M_H$$

be one-to-one ($f \in F$, where F is the set of those f for which $\int f(x)v(dx)$ is defined $\forall v \in M_H$).

References

- 1. Z. S. Zerakidze, On consistent estimators for families of probability measures. 5-th Japan--USSR Symposium on Probability Theory, Kyoto, 1986, 62--63.
- 2. Z. S. Zerakidze, Structure of the family of probability measures. Trudy Akad. Nauk Georgian SSR, 113 (1984), 37--39.