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1. Introduction 

Analytical and propagator numerical methods are elaborated for solution of Weng-
Taylor turbulence model ([1)], that was originally outlined by J. Smagorinsky (see [2-4]). In the 
Weng-Taylor model the eddy viscosity coefficient nonlinearly depend on velocities and is 
defined from additional phenomenological consideration, which constitutes a turbulence 
closure. In such type models sharp vertical boundary layers causes difficulties for traditional 
numerical methods. In this work a new numerical method is proposed, which is based on 
analytical representation of Weng-Taylor model solutions. It is shown that these analytical 
solutions of constituted initial boundary value problem can be resolved by additional solutions 
of system of ordinary differential equations. This system of equations is solved analytically, by 
using polynomial type substitutions for generalized Lagrangian variables. The obtained 
numerical solution, precision and effectiveness are compared to solution by using numerical 
propagator method ([5]). 
 
2. Problem formulation 

Weng-Taylor model equations ([1]) for horizontal U and V  velocity components, written 
here as the functions of the vertical coordinate z , are  

 ( ) ( )cos , 0 1, 0 ,m g
U UK Tf V V z t
t z z

α∂ ∂ ∂⎛ ⎞= + − < < <⎜ ⎟∂ ∂ ∂⎝ ⎠
T≤   (1) 

( ) ( )cos , 0 1, 0 ,m g
V VK Tf U U z t
t z z

α∂ ∂ ∂⎛ ⎞= + − < < <⎜ ⎟∂ ∂ ∂⎝ ⎠
T≤   (2) 

where (Hz) is the Coriolis force frequency and 410−=f 10gU = (m/s), 0=gV m/s. With the initial 
and boundary conditions:  

0 0(0, ) ( ), (0, ) ( ) , 0 1,U z u z V z z zϑ= = ≤ ≤
≤
≤

  (3) 
( , 0) 0, ( ,0) 0 , 0 ,U t V t t T= = ≤   (4) 
( ,1) , ( ,1) 0 , 0 .gU t V V t t T= = ≤   (5) 

The eddy viscosity coefficient  is defined from additional conditions, which 
constitutes a turbulence closure:  

mK

2 2
22 ,m

T U VK l
L z L

ν⎛ ⎞∂ +⎜ ⎟= +
⎜ ⎟∂⎝ ⎠

  (6) 

where m2/s is the molecular kinematics viscosity, 510−=ν zl κ=  is a mixing length scale in the 
simplest case, 39.0=κ  is von Karman constant and 890=L  m is the depth of the turbulent layer. 
 
3. Problem solution 

To solve the problem (1)-(6) we will introduce the following two functions: 
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m
V

U V K dVϑ = ∫

Since ( ) ( ),
, ,m

du U V
K U V

dU
=  ( ) ( ) ( ), ,

, ,m

u U V U t z
K U V

t t
∂ ∂

=
∂ ∂

 ( ) ( ) ( ), ,
,m

u U V U t z
K U V

z z
∂ ∂

=
∂ ∂

, 

then the equations become 
( ) ( ) ( ) ( )

2

12

, ,
, ,m

u t z u t z
K u F

t z
ϑ ϑ

∂ ∂
= +

∂ ∂
  (7) 

( ) ( ) ( ) ( )
2

22

, ,
, ,m

t z t z
K u F u

t z
ϑ ϑ

ϑ
∂ ∂

= +
∂ ∂

  (8) 

where 

( ) ( )( )1 cos ,
def

gF Tf Vϑ α ϑ≡ −  ( ) ( )( )1 cos .
def

gF u Tf U uα≡ −  

Having introduced the Varshavsky integral transformation (for examples, see [6]) 
( ) ( ) 1

0

1,
u

u

m

h u du
K

ϑ = ∫ , we obtain 

( ) ( )
2 2 2
1 1

1 12
12 210 0 0 2 11 12

2 2
1

21 2,
2

21

u u u
u

m

u duLh u du du uul T TK T uu u l L z zL z z L
u

ϑ
ϑ ϑϑ ν ν ϑϑ ϑ

ν ϑ

+
= = =

∂ ∂∂ ∂⎛ ⎞ ++ + +⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠ +
+

∫ ∫ ∫ =  

2 2 2 2
22 1 21 1

2 2 2
L u u l Tu u

T L
ϑ ϑ ϑ

ν
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪= + + + + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

.  

Similarly, if we consider the Varshavsky integral transformation ( ) ( ) 1
0

1, ,
m

h u d
K

ϑ
ϑ ϑ ϑ= ∫  then we 

have 

( ) ( )
2 2 2 2

2
1

0

1 2 1 2, 1 1
2 2 2m

L u l Th u d u u
K T L

ϑ
ϑ ϑ ϑ .ϑ ϑ ϑ

ν
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪= = + + + + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

∫ ϑ  

Now in order to make use Biot variational principle (see [7]) we will introduce and 
calculate the following functions: 

( ) ( )

22

2 2 3
1

1
0

2
2 1, 1

2 6 2 2 2

u
u

m

l T u
Lu L u u uF u du

K T

ϑ
ϑ ϑϑ

ν

⎧ ⎫⎛ ⎞
+⎪ ⎪⎜ ⎟ ⎛ ⎞⎛ ⎞⎪ ⎪⎝ ⎠= = + + + +⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪
⎪ ⎪
⎩ ⎭

∫
2 2

2 ,  

( ) ( )

22

2 2 3
1

1
0

2
2 1, 1

2 6 2 2 2m

l T u
LL uF u d

K T

ϑ
ϑ

ϑ
ϑ ϑ ϑ ϑϑ ϑ

ν

⎧ ⎫⎛ ⎞
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∫
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2 ,u  

( ) ( )( ) ( ) ( )
( )

( )

( )1 1 1

1 2
1 1 1 1

20 0 0

, ,
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u u
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uV u q F u du du du
K u

ϑ ϑ
ϑ

= = =∫ ∫ ∫ 2 ,  
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q t q t
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where 
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( )

2

1 1 1
1

1 , ,
( )

zu c F c const
q t

⎛ ⎞
= − + =⎜ ⎟⎜ ⎟

⎝ ⎠
 

2

2 2 2
2

1 ,zc F c
q t

ϑ
⎛ ⎞

= − + =⎜ ⎟⎜ ⎟
⎝ ⎠

.const  

After calculations of integrals in the expressions for the introduced functions ( ) ( )1
uV q  and 

( ) ( )2V qϑ  we obtain that 

( ) ( ) ( )2 2
1 1 1 2

7 1, c
61 3

u os ,gV u c q q q f Vϑ α= −   (9) 

( ) ( ) ( )2 2
2 2 1 2

7 1, c
61 3

os .gV u c q q q f Uϑ ϑ α= +   (10) 

Now we can consider the following integrals and calculate their:  and 

. Really, having designated 

( ) ( ) ( )
1

1

q
u u

z

H q h d= ∫ z

zϑ( ) ( ) ( )
2

2

q

z

H q h dϑ = ∫
1

1 z
q

ξ = −  and 
2

1 z
q

η = −  we can write 

( ) ( ) ( )
2 2

2 5 3
1 1

0

2 4 1 1, ,
3 40 10

u u L TlH q h d
T

ξ

ξ η ξ ξ η ξ η
ν
⎧ ⎫

= = + +⎨ ⎬
⎩ ⎭

∫ 1c q   

( ) ( ) ( )
2 2

2 5 3
2 2

0

2 4 1 1, .
3 40 10

L TlH q h d
T

η
ϑ ϑξ η η ξη η ξ

ν
⎧ ⎫

= = + +⎨ ⎬
⎩ ⎭

∫ 2c q  

It follows that 

( ) ( )
( ) ( ) ( ) ( )

1
2

2
3 21 2

1 1 1
0

1 12 1 ,
2 8

uqdef
u H q l L

1 1 1 1
1
2

D q dz q q q q
t ν

⎛ ⎞∂
′ ′≡ = +⎜ ⎟⎜ ⎟∂⎝ ⎠

∫ c q+   (11) 

( ) ( )
( ) ( ) ( ) ( )

2
2

2
3 22 2

2 2 2
0

1 12 1 ,
2 8

qdef H q l L
1 2 2 2

1
2

D q dz q q q q
t

ϑ
ϑ

ν

⎛ ⎞∂
′ ′≡ = +⎜ ⎟⎜ ⎟∂⎝ ⎠

∫ c q+   (12) 

Now from Biot variational principle, we can write the following two Lagrange-Biot equations 
([7]): 

( ) ( )

1 1

,
u uV D const

q q
∂ ∂

+ =
′∂ ∂

  (13) 

( ) ( )

1 1

.V D const
q q

ϑ ϑ∂ ∂
+ =

′∂ ∂
  (14) 

Substituting the relevant expressions for ( )uV , ( )V ϑ , ( )uD , ( )D ϑ  from  (9)-(12) in (13) and 
(14) we obtain the following system of two ODE: 

( ) ( )
2

22 2
1 1 2 1 1 1 1 1 1

7 2 36 1sin 0,
61 3 5 2g

l Lc q q fT V q q q q q qα
ν

′ ′′ ′ ′′+ + + =   (15) 

( ) ( )
2

22 2
4 1 2 2 2 2 2 2 2

7 2 36 1sin 0,
61 3 5 2g

l Lc q q fT U q q q q q qα
ν

′ ′′ ′ ′′+ + + =   (16) 

Let we have determined the analytical solution ( ) ( ){ }. .
1 1,sol solq t q t  of the system (15)-(16). 

Then the solution ( ) ( ){ }, , ,u t z t zϑ  of the reduced problem (7)-(8) is the functions 

( ) ( ) ( ) ( )( )
2

.
1 1.

1

, 1 cos sol
gsol

zu t z c fT q t V
q t

α
⎛ ⎞

= − + −⎜ ⎟⎜ ⎟
⎝ ⎠

,   (17) 

( ) ( ) ( ) ( )( )
2

.
2 2.

2

, 1 cos sol
gsol

zt z c fT U q t
q t

ϑ α
⎛ ⎞

= − + −⎜ ⎟⎜ ⎟
⎝ ⎠

.   (18) 

Here constants  and  can be found from the initial and boundary conditions (3)-(5). 1c 2c
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In order to investigate features of proposed solutions for U and  we look here only of 
begining stage of the boundary layer formation, when time 

V
t  is relatively small.  For this case 

the system of equation (15)-(16) for  and  can be solved by using asymptotic 
expansion around . So  and  can be written as: 

)(1 tq
)(2 t

)(2 tq
0=t )(1 tq q

2
1 0 1 2( ) ,q t A A t A t= + +   (19) 

2
2 0 1 2( ) ,q t B B t B t= + +   (20) 

assuming higher order coefficients in this expansion are small and can be omitted.   
Coefficients  and  can be resolved from (19)-(20) taking into account that boundary 
conditions  and 

0A

0,U
0B

0( )0 = ( )0,0 0V = , so obtaining as the result that  and ( )0,0 0u =

(0,0) 0ϑ =  too. Namely, for  and  we have 0A 0B ( )
( )

2
0

cos
,

cos
gc U Tf

A
Tf

α
α

+
=  ( )

( )
1

0

cos
cos

gV Tf
Tf

α
α
−

.
c

B =  

After substitution  and  from (19)-(20) into the (15)-(16) we obtain nonlinear 
system for four equations which should be solved in order to find  and . This system 
reads: 

)(1 tq )(2 tq

121 ,, BAA 2B

( )
2

2 2 2
0 0 1 2 0 1 2 1 0 0

72 7 2 cos 0,
5 61 3 g
l LA A A A A A A c V Tf A Bα
ν

− + − − =   (21) 

( ) ( )
2 2

2 2 3 2 2
1 1 2 0 2 0 1 2 0 1 2 1 0 0 1

144 288 22 co
5 5 3 g

l L l LA A A A A A A A A A A V Tf A B A Bα
ν ν

− − + − − + =s 0,    (22) 

( ) ( )
2 2

2 2 3 2 2
1 1 2 0 2 0 1 2 0 1 2 1 0 0 1

144 288 22 co
5 5 3 g

l L l LB B B B B B B B B B B U Tf A B A Bαs 0,
ν ν

− − + − − + =   (23) 

( )( )
2

3 3 2 3
2 1 2 0 1 2 2 1 1 2

432 1152 22 cos 0.
5 5 3 g

l LB B B B B B U Tf A B A Bα
ν ν

+ + + + =   (24) 

In the considered case, when , the system (21)-(24) splits into two independent ones 
in respect of coefficients 

0=gV

A  and . Moreover, to obtain real solutions of the systems for B A and 
 the absolute values of the coefficients   and  should be equal, B 1c 2c 1 2c c= . Here for 

calculations we use the following values of   1c 15.8=  and 2 15.8c = − .  
System (21)-(24) defines relations ( , )U U u ϑ=  and ( , )V V u ϑ= . To resolve these 

relations we rewrite (17)-(18) in the following form by subdivided all integration regions into 
sufficiently small parts and provided in each part a respective integration: 

( ) ( )
1 12

2 2 2 2
1 1 2

2,
i

i

U

i U

Tl Tu U V x U V dU U
L x

ν+ ∂
= +

∂∑ ∫ ,
L

+   (25) 

( ) ( )
1 12

2 2 2
1 1 2

2, ,
i

i

V

i V

Tl TU V x U V dV V
L x L

νϑ
+ ∂

= +
∂∑ ∫ +   (26) 

As the next, we use a following equivalent formulation: 

( ) ( ) ( )
1

2 2 21
2 2 2 22 ln .

2
U V

U V U V
x x

+∂ ∂
+ = +

∂ ∂
  (27) 

By using the Bonnet’s second mean value theorem and formula (27), the system (25)-(26) 
can be rewritten in the following form: 

( ) ( ) ( )
1 12

2 2 2 2 22 2
1 1 2, ln ,

i

i

i

U

i i ii
i U

Tl Tu U V x U V U V dU U U U U
L x L

ξ

ξ
ν

+

∂
= + + + <

∂∑ ∫ 1,<   (28) 

( ) ( ) ( )
1 12

2 2 2 2 22 2
1 1 2, ln ,

i

i

i

V

i i ii
i V

Tl TU V x U V U V dV V V V V
L x L

ξ

ξ
νϑ +

∂
= + + + <

∂∑ ∫ 1,<   (29) 

 170



The Second International Conference “Problems of Cybernetics and Informatics” 
September 10-12, 2008, Baku, Azerbaijan. Section #3 “Modeling and Identification” 

www.pci2008.science.az/3/37.pdf 
 

 171

Providing here iteratively numerical calculations of (28)-(29) we approximately assumed 
 and 1i iU Uξ += 1i iV Vξ += . Results of numerical calculations are shown on Fig.1. 

 
Fig.1. Wind module distributions in the different time moments: 1 0.012t 5− = , , 

, , 5 , long time calculations (quasi steady-state solution) using 
propagator scheme. 

2 0.0250t− =
3 0.0375t− = 4 0.005t− = 1t− =

 
Calculations of long time processes are provided by using propagator difference scheme, 

see Fig.1. It is shown in [5], that stability restrictions for the propagator scheme become more 
weaker in comparison to traditional semi-implicit difference schemes. In [5] it is proven that the 
scheme is unconditionally monotonic, it has truncation errors of the first order in time and of the 
second order in space. Propagator scheme is adopted for solution of problem (1)-(6) due to low 
order truncation error does not reflect the boundary layer formation in details. In Fig.1 only long 
time calculations (quasi steady-state solution) for wind module distribution are shown. 
Although, it should be noted that after properly chosen space grid mean values of von Karman 
constant and friction velocity, numerically calculated by using propagator scheme, can be 
obtained close to realistic. This allows considering that higher order propagator difference 
scheme can improve resolution in time and space, and will be more adopted for boundary layer 
calculations. 
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