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Let us consider the following problem of linear programming;:

ZC]-XJ- — max , (1)
=
)X =b, (2)
j=1
0<x;,<d,, j=1n, ©)
X;— integer, j=1,n. “4)

Itis assumed that a;, b, ¢;, d; (j= I,_I‘l) — are integer and positive.

The problem (1)-(4) refers to the class of intractable problems, i.e. the time required for
solution of the problem increases exponentially at the growth of dimension.
Most scientific studies on problems of integer programming examine problems of
linear programming with restriction of inequality. Evidently it connected with rigidity of
restriction (2) with integer positive numbers than inequality:

n
Zajxj <b
j=1

This study examines one approach to the solution of problem (1)-(4).

Inverse problem of aggregation (disaggregation), i.e. reduction of an integer equality to
the equivalent system with lesser coefficients was solved for equality with nonnegative integer
variables in [5]. Also has been proved the following theorem:

T heorem. If for the specified integer parameter P > 1 exists such t, that satisfies

condition

2

p>max{|b2+ pt—f,|, o, + pt - 1,| }

then system of equations

n
Zalixj =D, —t,
=1

X (5)
D a,;x; =b, +pt
=

and equation (2) are equivalent, i.e. sets of integer nonnegative solutions of (2) and (5)
coincide.

Here b, =b (mod p), b, = (b—b,)/ p, a,; =a; (mod p), & =(a; -a,;)/p,j=1n,

70



The Second International Conference ““Problems of Cybernetics and Informatics”™
September 10-12, 2008, Baku, Azerbaijan. Section #5 ““Control and Optimization™
www.pci2008.science.az/5/20.pdf

n n
f,=max » a, X f,=min ) a,.X.
1 XeGl(t); 27 » 2 Gz(t); 27N

D a;x; <b —t,0<x, sdj,jzl,_n},
j=1

Gl(t):{x = (X;5 Xy 5ees X))

>a X, 2b ~t,0<x, sdj,jzl,_n}
j=1

G, () :{X = (X}, X500y X))

Idea of the present approach consists of the following: Method of disaggregation lets
construct equivalent system of equations (5) with lesser coefficients instead of one equation (2),
then after disaggregation one can obtain equalities among coefficients which there are unities.
Then accepting as a pivotal element unknown with unit coefficient one can apply simplex
transformation without getting fractional coefficients. It’s quite clear that value of efficiency
function increases from iteration to iteration.

Let the problem (1)-(4) be the following:

f —c,X, —CyX, —... —C, X, —... —C_ X, =0
a, X, +a,X, +..+1-X, +... +a, X +X, =b" (6)

A, X, + 85Xy + .t By Xy ot Ay X, + X, =D

Here, without upsetting commonness is supposed that variable bringing in the basis is X,
and after disaggregation a,, =1.Besides b’ =b, —t, b{"” =b, + pt
Since X, is bringing in basis, so min(—C;)=—C, <0. Then applying simplex-
j

transformation one can exclude unknown X, from first and third equation of the system (6).

Reiterating application of the simplex transformations value of f can be increased, provided if

among the coefficients of first equation of (6) there are negative numbers. Otherwise process of

computation must be stopped.
Note that if the conditions are fulfilled, then present approach gives an optimal solution

of the problem (1)-(4).

R e m a r k. After disaggregation of optimization problem (1)-(4) some coordinates of
the optimal solutions are defined immediately. Taking that into account is obtained equivalent
problem with lesser number of unknowns.

For clarity of the present approach let us consider the following example:

Example.
f =21x, +11x, +10x, + 7x, + 13X, + 6X, + 11X, — max, (7)
TX, +4X, +4X; +3X, +6X, +4X, +6X, =10, )
0<x;, <1, j=17, )
X;— integers, j:1,_7 (10)

Note that the solution of the corresponding problem of relaxation is:

X =(1,0.75,0,0,0,0,0), at that f" =29.5.
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The system of equations equivalent to the equation (8) is the following:

(In

{2x1+x2+x3+x4+2x5+x6+2x7 =3
X, + X, + X, + X =1

Let us solve the problem assigned by the conditions (7), (11) and (9) by means of simplex-
transformations:
Iteration 1.

f, —21x, —11x, —10x, —7X, —13x, —6X, —11x, =0
2X, + X, +X; + X, +2X + X, +2X, + X, =3
X, + X, + X, + X, +X, =1

x=(0 0 0 0 0 0 0 3 1

Iteration 2.

f, +10x, —10x; —7X, —13X, +15X, — 11X, +21x, =21
- X, =X; +X, +2X, —Xg +2X; + X —2X, =1
X, + X, + X, + X +X, =1

Xx=(1 0 0 0 0 0 0 1 0)

It’s obvious that after accepting X, =1 X,, X;, X5, X¢, X, and X, get value 0. Then remains
only X, =1.
Thereby solution of the problem (7)-(10)is X =(1,0,0,1,0,0,0) and f" =28,
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