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Introduction   

Discrete optimization is an important area of Mathematical Optimization Theory both in 
theoretical and applied sense. Discrete optimization, in particular, integer programming[8] is an 
area appeared in 50-ties of XX century and until recently had no relation to solving equations in 
integer numbers in a Diophantine sense. Currently the integer programming is very developed 
area and found wide applications for mathematical modelling and finding optimal solutions in 
diverse areas of industry and management.  

General Integer Programming problem is formulated as  
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            (1.3)                      i=1,…, n integer. ,0≥ix
Coefficients  and values  are nonnegative integers. ,0≥ija ,ic ,0≥jB
An important particular case of the Integer Programming problem is the case with one 
constraint, case with m=1, Knapsack Problem, (1.4)-(1.6).  
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            (1.6)                      i=1,…, n integer. ,0≥ix
Coefficients and value B are nonnegative integers. ,ia ,ic

Having a single constarint (1.5) gives to the Knapsack Problem an undoubted elegance of 
clearity of formulation and helped this problem to obtain wide theoretical and applied usage. 
But this elegance did not make the Knapsack Problem computationally easier to solve – it still 
belongs to the most difficult to solve class of NP-hard  problems. 

Wide theoretical and practical applications of Knapsak Problem created a huge volume of 
research on creating efficient computational methods for its solving [5], [6]. 

Historically integer programming problems (1.1)-(1.3) including Knapsack Problems 
were considered as special cases of Linear Programming problems, when variables allowed to 
have  with  real values, and not restricted to be integers only. This laid an imprint on the 
solution methods of integer programming. And as a result currently the most efficient existing 
methods of integer programming are methods based on using branch and bound technique. 

ix
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The Framework of new approach to developing methods for solving the Knapsack 
Problem 
 

First by adding an integer nonnegative slack variable  with coefficients  =1 and 
=0 the original Knapsack Problem (1.4)-(1.6) is reduced to the following version 

1+nx 1+na

1+nc

(1.7)                Maximize   ∑
∈Ni

ii xc

subject to 

            (1.8)                      , ∑
∈
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            (1.9)                       ,0≥ix ,1,...,1 +=∈ nNi integer. 
The structure of the original Knapsack Problem (1.4)-(1.6) allows to determine lower and 

upper bounds c and for c the optimal value of the Knapsack Problem 

•c =Maximum . ∑
∈Ni

ii xc

Now the problem is reduced to a search the for value c= in the interval [•c c, c ]. Note 
that, c=c(b) is a nondecreasing function of b. The  search can be caried out by testing values of 
c from [c , c ] by some strategy. So, the original Knapsack Problem is reduced to the following 
Max Consistency problem: 

Find integer nonnegative variables  for which, system of two Diophantine equations 
(2.0) and (2.1) are consistent for maximum value of c in a given interval.   

ix

Maximize c cc ≤≤   subject to 

(2.0)                                                  =c, ∑
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(2.1)                                                 , ∑
∈
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(2.2)                                                 i=1,…, n+1 integer. ,0≥ix
 

By using Integer Equivalent Aggregation Procedure this Max Consistency2 problem can 
be reduced to the equivalent Max Consistency 1 problem, where two equations (2.0)-(2.1) are 
replaced by a single equivalent equation.  

Foundations of Integer Equivalent Aggregation was presented by English mathematician 
G. B. Mathews to London Mathematical Society in 1897. 

The principal formulation is: 
 
Aggregation Proposition. For an arbitrary system of m linear algebraic equaitions with 
integer coefficients and right hand sides and a bounded set of integer nonnegative solutions an 
infinite number of m-tuples of integer weights exists, so that any equation created as linear 
combination of the original equations with these weights has the same set of nonnegative 
integer solutions as the original system. 
 

In our case of m=2 according to Aggregation Proposition two integer multipliers are 
required to aggregate equations (2.0) and (2.1) into a single equivalent equation. They are 
denoted by v (value) for equation (2.0) and w(weight) for (2.1). In the search procedure for 
solving Max Consistency 1 problem, consistency of the aggregated equation is required to be 
tested for various values of c. Computationally it is highly desirable to determine multipliers 
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only once, so that they can be valid for all values to be tested. Additionally, for the considered 
Knapsack Problem they should have positive values. Both of these goals are made possible by 
determining the multipliers by Theorem 2 of [3]. This Theorem is formulated by reference to a 
set of Q- a set of multi-dimensional vectors (as possibly constrained by additional inequalities 
and equalities of interest) and collection of eight inequality conditions: 
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Each of the inequalities (3) is strict, with nonnegative right hand side, thus providing the lower 
bounds for the absolute values of the multipliers v and w. 
 
Theorem 1.(Theorem 2, in [3]).  Equation  
(5)                                  , ∑

∈

=
Nj

jj x βα

where                   
(6)                     jjj wavc +=α ,   j∈N,     ;wbvc +=β  
posseses the same set of nonnegative solutions as system (2.0)-(2.1), if v and w are relatively 
prime integers and satisfy any pair of conditions  ( ), where  21 , krip CC

i≠ k or p r. If i=k=1 in the selected pair ( ), then the multiplier  w (if i=k=2, then the 
multiplier v) can be assigned an arbitrary integer value of any sign, relatively prime with v(w). 

≠ 21 , krip CC

Now the original Knapsack Problem (2.0) – (2.2) is reduced to the Consistency 1 problem 
Find max c from interval c cc ≤≤  
subject to (5) – (6).   
For solving this problem [1] presents the following  
Consistency Algorithm  
Step 1. Initialization. Determine c -an upper bound for . •c
Step 2. c= c . 
Step 3. Compute β  and test the consistency of Diophantine equation (5). 
Step 4. If (5) is inconsistent, then set c:=c-1 and return to Step 2. 
Step 5. If Eq (5) is consistent, then =c and the corresponding solution of equation (5) is the 
optimal solution of the original Knapsack Problem, END. 

•c

For testing consistency of Diophantine equation (5) two new computationally efficient 
algorithms have been developed [1], [2], [4], [9]. In these algorithms a graph is generated based 
on equation (5) and a the shortest path between specific pairs of vertices is defined. 
Computational complexity of these algorithms are O(n 1α ) and O(n+ )  where 2

1α jNj
αα

∈
= min1 . 

In a comprehensive computational experiments where Knapsack Problems with variables up to 
250,000 were solved [1] the developed knapsack solution procedure, Consistency Algorithm, 
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appeared to be significantly superior to advanced branch and bound methods (previously 
established to be the most efficient knapsack solution procedures), obtaining solutions several 
orders of magnitude faster for hard problems. 

In another developed search method Consistency Algorithm for solving the Knapsack 
Problem is replaced by a binary search algorithm for c=  in interval [•c c , c ]. In this method for 
Knapsack Problem the Diophantine equation testing problem is solved at most c(log2 -c) 
times. This means that with the use of a polynomial  Diophantine equation testing algorithm, the 
developed binary search Knapsack solution algorithm would be polynomial.  
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